Система поддержки принятия инвестиционных решений в хедж-фонде на основе логико-лингвистического моделирования и цифрового двойника
Воронова Н.С., Яковлева Е.А., Шарич Э.Э., Яковлева Д.Д.Статья в журнале
Вопросы инновационной экономики (РИНЦ, ВАК)
опубликовать статью | оформить подписку
Том 13, Номер 1 (Январь-март 2023)
Цитировать:
Воронова Н.С., Яковлева Е.А., Шарич Э.Э., Яковлева Д.Д. Система поддержки принятия инвестиционных решений в хедж-фонде на основе логико-лингвистического моделирования и цифрового двойника // Вопросы инновационной экономики. – 2023. – Том 13. – № 1. – doi: 10.18334/vinec.13.1.117176.
Введение
В современных условиях управление инвестициями в хедж-фонде характеризуется активным воздействием современных технологий на процедуру агрегации, отбора и обработки информационных потоков о движении капитала на финансовых рынках за счет таких технологий, как искусственный интеллект, машинное обучение, блокчейн, обработка больших данных. Это обуславливает необходимость разработки и адаптации методического обеспечения для системы управления объектами финансового рынка. Исследование основано на работах зарубежных и отечественных ученых, занимающихся теориями стратегического управления, принятия решений, теорией инвестиций, теорией систем и системного анализа, ситуационного и адаптивного управления – научные труды Р.Л. Акоффа, И.Ансофа, Болотовой Л.С., Волковой В.Н., Клейнера Г.Б., Кукора Б.Л., Клименкова Г.В., Поспелова Д.А., Г. Марковица, У. Шарпа, Ю. Фама, К. Френча, Халина В.Г., Черновой Г.В. [1, 2].
Информационной базой исследования служат данные статистических бюро, мировых рейтинговых и аналитических агентств, доклады РАН. Примененные методы исследования – это логика, диалектика, теория систем и системный анализ, семиотика и, в частности, логико-лингвистическое моделирование, положения теории ситуационного управления и адаптивного подхода к управлению, теории искусственного интеллекта.
Цель исследования – формализация системы поддержки принятия инвестиционных решений хедж-фонда на основе технологий логико-лингвистического моделирования.
В контексте гипотезы исследования необходимо обосновать применение логико-лингвистического моделирования в виде фреймового представления знаний о принятии финансовых решений в рамках системного, ситуационного подхода для формализации системы поддержки принятия инвестиционных решений хедж-фонда, что должно обуславливать характеристики оцифрованных параметров и свойств, агрегируемых создаваемым цифровым двойником.
Новизной и отличием от работ других авторов является интеллектуальная обработка свойств и параметров объекта управления на основе цифрового двойника хедж-фонда.
1. Методическое обеспечение системы поддержки принятия инвестиционных решений
Для придания системе поддержки принятия решений (СППР) формализованного вида, то есть представление ее в виде информационной и цифровой модели процесса принятия решения, необходимо использовать современные методические инструменты, включая «непременный атрибут познавательных процессов» или «метазнания или знания о знаниях» [1, с. 56]. Под методическим обеспечением понимается интеллектуальный механизм перехода от сбора информации, знаний, их агрегации и обработки к конечному результату – достижению целевого значения состояния элементарного объекта в финансовом секторе экономике [2, с.122] путем алгоритмизации его основных этапов с позиции теории принятия решений [3, c. 3110]. Представим алгоритм принятия решений в СППР, который может быть адаптирован под конкретные ситуации или элементарные объекты, предметные области [4, c.130]:1. Агрегирование информации об объекте исследования, составление базы знаний, на основе которой и будет производиться процесс анализа и обработки данных для поиска решения на основе концептуального каркаса социальной экономической системы, предложенного Б.Л.Кукором в теории адаптивного управления [5, c.46];
2. Анализ потоков между элементарными объектами на основе оцифрованных параметров и свойств, раскрывающих «связи параметров входа (управляющего воздействия и прогноза) с параметрами цели» [5, c.61-64];
3. Сопоставление потребностей и возможностей потоков на входе и выходе из элементарного объекта управления для выработки управляющего воздействия, «состоящего из двух частей: инструктирование (правило достижения цели) и мотивации (извещение объекта об удельной ценности альтернатив)» [5, c.207];
4. Идентификация проблемных ситуаций с помощью логико-лингвистического моделирования на основе анализа потребностей и возможностей и прогноза «о будущем значении нерегулируемых субъектом параметров входа в систему (пессимистический и оптимистический)» [5, c.206];
5. Сопоставление каждого класса проблемных ситуаций с управленческими решениями, в том числе при реализации функции учета «о свершившихся событиях к моменту речи на ресурсах и операциях сетевого графика» [5, c.206];
6. Составление фреймов знаний на основе логико-лингвистического моделирования в динамике. Актуализация и формирование параметров целеполагания «о желаемом значении параметра выхода из объекта в терминах результата деятельности» и параметров учета «о свершившихся событиях к моменту речи на ресурсах и операциях сетевого графика» для принятия решений на основе фреймового представления знаний о ситуации и путях ее решения [5, с.206]. В настоящем случае это:
¾ Определение стратегий инвестиционного портфеля;
¾ Кросс-секторальное распределение риска;
¾ Выбор стратегии инвестирования.
7. В случае нецелесообразности или неудовлетворения результатами СППР лицом, принимающем решение, производится повторная калибровка модели и постоянный мониторинг оцифрованных параметров стратегий инвестирования на основе цифрового двойника модели объекта или методами когнитивно-графического представления информации [6, c. 117]. Оценка результатов принятого решения и мониторинг на основе цифрового двойника состояния системы. Мониторинг параметров модели, потоков, проблемных ситуаций для обновления базы знаний об объекте.
Говоря непосредственно о реализации инвестиционных решений в хедж фонде, то задача сводится к конструированию оптимального портфеля под имеющимися ограничениями (заданными извне) и предположениями управляющим фонда о необходимой или желаемой доходности активов (hurdle rate), о потенциальных принимаемых рисках фондом, ковариацией между портфельными активами и ограничениями, накладываемыми другими участниками деятельности хедж-фонда – инвесторами (достижение максимального значения коэффициента Шарпа [7, c. 49–58] при минимальном стандартном отклонении доходности активов от средней величины и при пропорциональном вкладе отдельных активов в общий риск портфеля). Все это практически недостижимо без кросс-секторального и кросс-функционального риск-менеджмента (для которого и необходимо создание СППР). Другими словами, процесс принятия решения сводится к определению весовых коэффициентов по риску для активов в портфеле и минимизации этих значений. Так же одним из защитных механизмов (принятие решения, по которым так же требуется) может быть техника стоп-лосс, позволяющая ограничивать потери фонда [8, c.25]. Более того важно учитывать влияние таких инструментов как опционы, фьючерсы, где возможно получение большого уровня кредитного плеча, повещающее потенциальную доходность и потенциальные риски потерь пропорционально. Опираясь на исследование [9, c.480] опишем основные процедуры риск-менеджмента для апробации моделей оптимизации портфеля фонда, которые будут впоследствии заложены в цифровой двойник объекта:
· Определение стратегий портфеля: управляющий хедж-фонда моделирует стратегии, используя известные риск-факторы, с целью извлечения избыточной прибыли на открытом рынке. Для оценки целесообразности реализации той или иной стратегии используется историческая (ретроспективная) доходность, волатильность, показатели диверсификации и т.д.
· Кросс-секторальное распределение риска: так же это можно назвать бюджетированием риска. Инвестор определяет относительные веса стратегий и формирует матрицу решений для выбора наиболее подходящего или допустимого множества стратегий (в данном случае множество задается ожидаемым или желаемым показателем риск/доход или значением коэффициента Шарпа и т.д.).
· Распределение риска: менеджер определяет оптимальное разделение риска по портфелю. Это выполняется за счёт динамического изменения распределения риска между портфельной стратегий и безрисковыми активами (лонг акции, шорт облигации и так далее). Таким образом, через мониторинг проблемной ситуации - системы соотношения риска между рисковыми и безрисковыми активами – получается соблюдать целевое значение состояния портфеля – константа стандартного отклонения доходности (минимизированное).
При алгоритмизации процесса принятия решений одним из основных пунктов является идентификация методического обеспечения СППР, которое выражается в цифровом двойнике – агрегаторе знаний об объекте управления [10, с. 1375]. Рассмотрим цифровой двойник на примере крупнейшего хедж-фонда в мире с активами под управлением в 140+ млрд. долларов – Bridgewater LLC (рис. 1).
Рис. 1 Цифровой двойник для СППР
Источник: составлено авторами
Обработанная информация через оцифровку основных параметров и индикаторов [11, c.266] передается в СППР для последующего анализа и систематизации на основе формализации этих данных в виде потоков – информационных, финансовых и ресурсных [12, c.240]. Данные потоки между элементарными объектами системы в их исходном или текущем положении и целевом состоянии так же позволяют определить потребности и возможности каждого элементарного объекта, при определении разрывов между которыми и возникает отклонения параметров исходных от желаемого или целевого значения, что говорит о наличии неразрешенных проблемных ситуациях, узких местах и угрозах, разобщении системы для процесса принятия инвестиционного решения [4, c. 146-195].
Апробация системы поддержки принятия инвестиционных решений хедж-фонда
Для анализа проблемных ситуаций и их сопоставления с управляющими решениями [4, с.268, 13, с.100], а также выявления узких мест, необходимо построение альтернативного сетевого графика процесса принятия инвестиционных решений хедж-фонда. Стрелки в данном графике – потоки, а круги являются элементарными объектами.Каждому классу проблемных ситуаций можно сопоставить набор возможных управленческих решений. Построение альтернативной сетевой модели в виде графика процесса достижения оптимального состояния объекта управления позволяет сузить область поиска альтернативных решений и свести их к нескольким, которые, исходя из накопленных знаний управляющего фондом, будут иметь наивысшую вероятность осуществления [14, с. 3176].
Следующие мероприятия детализируют процесс управления системой принятия решения. В случае если на стадии контроля результатов лицо, принимающем решение, получает неудовлетворительный результат, то производится разработка нового решения [15, с.347].
Детальное изучение альтернативного сетевого графика позволяет построить информационную когнитивную модель управленческого процесса в виде динамического когнитивного сценария [13, с.100-101] и далее цифровую [16, с.1818] с дальнейшим картированием [17, c.40-42, 18]. Так, альтернативный сетевой график для реализации цели «оптимизация портфеля с целью минимизации волатильности и максимизации доходности» строится с сигнала о проблемных ситуациях – «добавление или исключение инвестиции из портфеля фонда» [7]. Решение проблемной ситуации и проведение работ будет связано с оценкой актива, выявлением оптимальных весов для каждого актива внутри портфеля, прогнозом коэффициентов эффективности, риск менеджментом, а целевое значение будет - «максимизация избыточной прибыли». Если же не достигнуто желаемое состояние, из-за получения менеджеров фонда информации об отсутствии ресурсов для проведения анализа сделки, то это проблема первого класса, которая возникла из-за нарушения взаимодействия между элементами [5 c. 98-102, 13, с. 101].
Рис. 2 Альтернативный сетевой график процесса принятия инвестиционных решений внутри хедж-фонда
Источник: составлено авторами на основе [5 c. 98-102, 13, с. 101].
Условные обозначения (рис.2): Ц – целеполагание; У – учет; А – анализ; П – прогнозирование; К – контроль; УВ I – управляющие воздействия по определению, есть ли потребность в ресурсах; УВ II – управляющие воздействия по определению взаимосвязи между отдельными элементами системы; УВ III – управляющие воздействия по обеспечению информационными ресурсами; 1 – составление плана инвестирования; 2 – анализ текущего состояния портфеля; 3 – идентификация проблемных ситуациях; 4 – оценка ее; 5 – решение проблемной ситуации нецелесообразно с учетом расходуемых ресурсов; 6 – классификация проблемных ситуаций по трем классам проблем; 7 – перемещение средств внутри элементарными объектами; 8 – перемещение средств между элементарными объектами; 9 – получение средств от контрагентов; 10 – возможность использования сторонних ресурсов; 11 – изменение метода управления процессов ; 12 – повышение эффективности; 13 – изменение целевых параметров объекта; 14 – изменение целевых параметров субъекта; 15 – изменение структуры управления; 16 – замена методической основы управления; 17 – планирование шагов реализации стратегии; 18 – контроль.
Далее рассмотрим и охарактеризуем основные потоки, через которые взаимосвязаны элементарные объекты в модели (табл. 1):
Табл. 1 Перечень потоков хедж-фонда Bridgewater LLC
Поток
|
П1
|
В1
|
П2
|
В2
|
П3
|
В3
|
П4
|
В4
|
Информационный
|
Потребность в
обеспечении точной информации
|
Возможность
мониторинга
|
Потребность в финансировании
|
Возможность получения финансирования
|
Количество
совершенных сделок
|
Возможность увеличение кол-ва сделок
|
Потребность получения финансирования сделки
|
Возможность получения финансирования по контракту
|
Финансовый
|
Финансирование маржинальных позиций
|
Возможность
маржинального финансирования
|
Потребность в текущей ликвидности
|
Возможность получения текущей ликвидности
|
Потребность в оплате manager fee
|
Возможность оплаты комиссионных
|
Потребность в ликвидности со стороны инвесторов
|
Возможность получения ликвидности
|
Ресурсный
|
Получение
специальных условий торговли
|
Возможность получения специальных условий
|
Условные заявки
|
Возможность использования условных заявок
|
Потребность в аналитике
|
Получение аналитики
|
Эффективное использование средств
|
Возможность эффективного использования средств
|
Обозначения П1..4 – это потребности 1..4; В1..4 – это возможности 1..4
Заметим, что при нарушении соответствия между потребностями и возможностями объектов управления возникает резкий дефицит ресурсов, что нарушает процесс оптимального принятия решения о целевом значении проблемной ситуации.
Далее более подробно рассмотрим взаимодействие двух элементарных объектов – «Управляющий хедж-фонда» и «Инвесторы», поскольку данное взаимодействие является основополагающим для хедж-фонда и в его рамках происходит определение стратегий инвестирования (рис.3).
Рис. 3 Взаимодействие элементарных объектов в цифровом двойнике
Источник: составлено авторами [13, с.99]
При несовпадении потребностей и возможностей «Управляющий хедж-фонда» и «Инвесторы» возникает проблемная ситуация, связанная с необходимостью принятия решений по инвестированию и выбором инвестиционной стратегии (проблемная ситуация 1 класса), в данном случае лимитирующий критерий – наличие и объем ресурсов для инвестирования. Исследуем более подробно данную ситуацию на основе системного подхода и логико-лингвистического моделирования – посредством фрейма потока между данными элементарными объектами по дескриптивным функциям управления: таким как целеполагание, учет, анализ и прогноз (табл. 2).
Табл. 2 Фрейм потока
1. Целеполагание
| |||||
Код
|
Оцифрованный параметр - целевое
значение
|
Значение
| |||
I
|
Достижение необходимого объема финансовых
ресурсов для реализации инвестиционных стратегий и формирования
инвестиционного портфеля
|
Мax
| |||
Учет
| |||||
Код
|
Оцифрованный параметр
|
Тип
| |||
W
|
Вес активов
|
Числовая
| |||
P
|
Доля от общей доходности
|
Числовая
| |||
R
|
Доля от общего риска
|
Числовая
| |||
L
|
Доходность/риск
|
Числовая
| |||
S
|
Коэффициент Шарпа
|
Числовая
| |||
D
|
Коэффициент диверсификации
|
Числовая
| |||
Fin
|
Общий объем финансирования
|
Числовая
| |||
G
|
Сохранение гомеокинетического равновесия
|
Качественная
| |||
Прогноз
| |||||
Код
|
Оцифрованный параметр
|
Пессим.
|
Оптим.
| ||
It
|
Объем финансовых ресурсов для
инвестирования
|
уменьшается
|
увеличивается
| ||
Управляющее воздействие
| |||||
Код
|
Название
|
Тип
| |||
M1
|
Выбор стратегии инвестирования (релокация
средств между активами в портфеле)
|
Качественная
| |||
Целевое значение данного потока - достижение необходимого объема финансовых ресурсов для реализации инвестиционных стратегий и формирования инвестиционного портфеля, что определяется следующими параметрами: вес активов, доля от общей доходности, доля от общего риска, доходность/риск, коэффициент Шарпа, коэффициент диверсификации, сохранение гомеокинетического равновесия. Функция прогноза в фрейме реализуется на основе прогноза объема финансовых ресурсов для инвестирования, а управляющее воздействие - выбор стратегии инвестирования. По параметрам фрейма (оцифрованным и агрегируемым цифровым двойником) СППР проводит анализ на основе алгоритмизации зависимостей между ними [19, с.570].
Так, на основе данного фрейма, СППР проводит выбор наилучших стратегий для инвестирования и формирования инвестиционного портфеля, что позволяет сохранить равновесие в потоках между элементарными объектами (потребности и возможности совпадают). Соответствие потребностей и возможностей между элементарными объектами, в свою очередь, обеспечивает сохранение гомеокинетического равновесия в системе, в данном контексте риск потери гомеокинетического равновесия может измеряться соотношением нарушений в потоках между элементарными объектами к общему числу потоков. При реализации механизма СППР на основе логико-лингвистического моделирования и системного подхода данный риск возможно минимизировать.
Выводы
Таким образом, в статье рассматривалась проблема формализации принятия инвестиционных решений для хедж-фонда на финансовых рынках в целях повышения эффективности инвестиционных стратегий. Проведена формализация СППР для хедж-фонда путем разработки алгоритма принятия решений на основе системного подхода и соответственной модификацией модели традиционной теории принятия решений на основе логико-лингвистического моделирования посредством фреймового представления знаний по дескриптивным функциям управления. Приведено информационное обеспечение СППР в виде цифрового двойника объекта управления и оцифрованных параметров, анализируемых во фреймах СППР. Разработанные рекомендации были апробированы в виде альтернативного сетевого графика процесса принятия инвестиционных решений хедж-фонда. Дальнейшее направление исследования может быть связано с применением нейросетевых технологий в СППР.
Страница обновлена: 24.01.2023 в 14:26:22