Оценка в Lp-нормах решения задач линейного программирования с приближенными данными
Чувенков А.Ф.1, Рутта Н.А.1
, Стрюков М.Б.1
, Болгова А.Э.1
1 Ростовский государственный экономический университет (РИНХ), Россия, Ростов-на-Дону
Скачать PDF | Загрузок: 7
Статья в журнале
Информатизация в цифровой экономике (РИНЦ, ВАК)
опубликовать статью | оформить подписку
Том 4, Номер 1 (Январь-март 2023)
Эта статья проиндексирована РИНЦ, см. https://elibrary.ru/item.asp?id=52264050
Аннотация:
В статье рассматривается обусловленность решения корректных вычислительных задач линейного программирования (ЗЛП), заданных в канонической форме с неточно известными элементами матрицы и вектором данных. Дается в различных Lp-нормах оценка решения ЗЛП. Приводятся в виде теорем оценки погрешности решения ЗЛП с приближенно заданной правой частью, с приближенно заданной матрицей коэффициентов. Также в виде теорем получены оценки относительной погрешности обратной матрицы возмущений и абсолютной и относительной погрешностей приближенного решения ЗЛП в общем случае с приближенно заданными коэффициентами системы ограничений. Реализация разработанных авторами утверждений в виде ряда приведенных теорем позволяет эффективно проводить исследования бизнес-процессов в цифровой экономике на основе линейных математических моделей и более обоснованно получать решения вычислительных задач при работе с приближенными данными.
Введение
Актуальность выбранной темы обусловлена распространением и использованием мощных компьютеров и пакетов прикладных программ, возникновением массовой потребности быстро получать необходимые оценки и расчеты, не углубляясь в вычислительные детали и математические доказательства. Однако, бездумные вычисления могут приводить к очень большим ошибкам, если используются приближенные данные или необоснованные методы решения. Отсюда возникает целесообразность разработки этой темы и доведения результатов до потребителя.
Использование компьютеров для исследования каких-либо процессов или объектов в экономике опирается на соответствующие им математические модели с последующей формулировкой вычислительной задачи, выбором метода решения, счета по программе, обработке и интерпретации результатов. Из них самые распространенные в экономике модели оптимизации – задачи линейного программирования, которые и становятся нашей целью и задачей исследования.
Изученность проблемы достаточно полно представлена для систем линейных алгебраических уравнений с приближенными коэффициентами в работах [1-4] и линейных операторов, «возмущения» которых изучались в нормированных пространствах общего вида [5].
Целесообразность представленной темы и ее научной разработки определяется высокой практической значимостью получаемых результатов. Знакомство потребителей, работающих в сфере экономики с математическими моделями, с результатами исследования позволит им значительно улучшить обоснованность выводов при проведении вычислений с приближенными данными.
Научная новизна заключается в том, что исследования проведены в n-мерном пространстве с различными Lp-нормами для задач линейного программирования (ЗЛП) в общем виде, что важно при практическом применении.ЗЛП в математической форме имеет вид:
(1)
где –неотрицательный вектор-столбец искомых
переменных
;
– матрица известных коэффициентов размера
– вектор известных данных
;
– заданная линейная целевая функция
(см. [7-12]).
Трудность решения вычислительной
задачи линейного программирования определяется тем, что как элементы матрицы , так и вектор данных
на практике известны неточно, с
определенной погрешностью. В некоторых случаях, определяемых структурой
матрицы, это может настолько сильно исказить оптимальное решение
, что его нельзя будет принять за ответ
и использовать в практической деятельности. Такие задачи относят к классу плохо
обусловленных вычислительных задач в отличие от некорректных задач,
рассмотренных в [13], которые после проведения регуляризации становятся
корректными. Считаем, что для каждого n-мерного вектора
определена и фиксирована для
вещественного числа р,
, Lp-норма
.Такие
пространства мы обозначаем
, это полные
нормированные пространства (банаховы) [14,15]. Наиболее употребительными
являются следующие три пространства, определяемые нормами:
, выбор нормы
определяется
случаем, когда учитывается суммарная абсолютная величина координат вектора;
- евклидова норма;
,
выбор нормы
означает,
что учитывается максимальная абсолютная компонента вектора.
Большинство вычислительных задач в
математике может быть записано в виде y = А(x), где А – некоторое преобразование,
действующее из нормированного пространства в нормированное пространство
. Для
оценки величин погрешностей приближения
к входному
данному х и приближенного решения
к точному у
введены некоторые их меры: абсолютные погрешности
(используется
норма пространства
),
(используется
норма пространства
)
и относительные погрешности
,
.
Предполагаем, что вычислительная
задача корректна, а именно: 1) для определенного множества допустимых
входных данных х из решение у из
пространства
существует;
2) единственно; 3) устойчиво. Наличие устойчивости означает, что
решение у может быть приближено последовательностью элементов
с любой точностью.
На практике конечные погрешности входных данных могут настолько сильно исказить
результат, что его нельзя будет принять за приближение точного решения.
Если между абсолютными погрешностями
входных данных и
решения
вычислительной
задачи установлено неравенство
, то величина
называется абсолютным
коэффициентом обусловленности; в частности, величина
называется абсолютным числом
обусловленности; здесь
нормы обратной
матриц (см. [3]).Если установлено
неравенство
между
относительными погрешностями данных и решения, то величину nd называют относительным коэффициентом
обусловленности.
Вычислительную задачу А(х)
называют хорошо обусловленной, если погрешностям входных данных отвечают
погрешности решения, обеспечивающие принятие нами приближенного решения с требуемой
точностью, и плохо обусловленной, если возможные погрешности настолько
искажают приближенное решение у*, что его нельзя принять за
решение задачи с заданной точностью (см. [4], [16-19].
Приведем пример плохо обусловленной ЗЛП:
,
,
;
;
Здесь имеем в норме
, точное решение
,
Заменяя коэффициент 1 при
в первом уравнении системы
приближенным числом
, будем иметь для такой измененной
системы (
) решение
,
которое свидетельствует о плохой
обусловленности ЗЛП.
Если изменить вектор данных в первоначальной
системе, уменьшив вторую координату на 1, получим ЗЛП ), для которой оптимальное решение
;
. Опять имеем плохо обусловленную
задачу.
Цель научного исследования состоит в получении оценок решения ЗЛП с приближенными данными, которые позволяют установить при каких ограничениях на погрешности приближенных данных вычислительная задача в определенных Lp-нормах будет хорошо обусловленной и приближенное решение может быть принято за конечный результат.
Теоретическая значимость исследования заключается в том, что полученные в ней результаты могу быть использованы не только для линейных задач оптимизации, но и в других линейных моделях микроэкономики и макроэкономики или эконометрики, применяемых в экономике, с известными приближенно данными.
Практическая значимость полученных результатов состоит в том, что ими может воспользоваться массовый потребитель, применяющий для исследования процессов или объектов в экономике линейные математические модели.
Методология исследования проблемы обусловленности вычислительных задач линейного программирования с приближенно известными данными заключалась в последовательной постановке в начале менее сложной задачи, ее решению, и переходе к решению более сложных задач. Для решения поставленных задач использовались методы линейной алгебры ( [3], [5], [12], [20-22]), исследования операций [6-11], вычислительной математики ( [4], [16-19]) и функционального анализа [14, 15].
1. оценка погрешности решения Злп с приближенно заданной правой частью
Предполагаем, что ЗЛП приведена к канонической форме
,
и известна невырожденная
матрица (считаем ранг
) при оптимальном базисном решении
(см. [4], [6], [8], [10]).
Рассматриваем случай, когда приближенно заданы исходные данные, вектор-столбец
а элементы матрицы
системы уравнений
известны точно.
Теорема 1.Пусть точное решение системы
, в которой правая часть
есть приближение к
, с известными погрешностями:
абсолютной
и относительной
.Справедливы следующие утверждения:
1) Для точного конкретного решения системы
верны следующие оценки абсолютной и
относительной погрешностей приближения
к
:
2) Для любого решения системы
справедлива оценка
3)Справедлива оценка погрешности
значений целевой функции: где показатель q определяется из формулы
Оценку 1) получаем из последовательности следующих преобразований:
Оценку относительной погрешности решения в пункте 2)получаем из неравенств:
Обозначаем через решение системы
в которой правая часть
есть приближение к
, тогда
где
неотрицательный ортант. Пусть
решение системы
и
Используя неравенство Минковского (см.
[14, 15]), получаем оценку абсолютной погрешности 3) значений целевой функции
где
.
2. оценка погрешности решения Злп с приближенно заданной матрицей
Сохраняя обозначения предыдущего пункта
1, рассматриваем случай невырожденной матрицы с приближенно заданными
коэффициентами.
Теорема 2. (Достаточное условие не вырождения
матрицы ).
Если абсолютная погрешность матрицы удовлетворяет ограничению
,
то матрица является невырожденной.
Обозначая через матрицу погрешностей, получаем равенство
Отсюда следует, что матрица невырожденная тогда и только тогда,
когда невырожденная матрица
. Из [3, 5] известно, что если
то это верно. Это справедливо и
когда
Отсюда получаем оценку , что и требовалось установить. Отметим,
что если матрица
вырожденная, то
Достаточное условие не вырождения
матрицы через относительную погрешность
приближенного решения
имеет вид
.
Теорема 3. Пусть и
есть решения систем
и
, причем
- невырожденная матрица.
Если
то справедливы следующие оценки
абсолютной и относительной погрешностей приближенного решения
:
,
.
В силу теоремы 2 матрица невырожденная и имеет обратную
тогда получаем следующую цепочку
неравенств:
Отсюда имеем искомую оценку
3. ОЦЕНКА погрешностиРЕШЕНИЯ ЗЛП В ОБЩЕМ СЛУЧАЕ с приближенно ЗАДАННЫМИКОЭФФИЦИЕНТАМИ СИСТЕМЫ ОГРАНИЧЕНИЙ И ПРАВОЙ ЧАСТЬЮ
Предполагаем, что ЗЛП приведена к канонической форме
,
и известна невырожденная
матрица (ранг
) при оптимальном базисном решении
(см. [4], [6], [8], [10]).
Рассматриваем случай, когда приближенно заданы исходные данные, вектор-столбец
и элементы матрицы
. Пусть А – невырожденная
матрица,
- возмущенная матрица, то есть
, где
- произвольная матрица возмущения.
При выполнении указанного в теореме 2
достаточного условия матрица невырожденная, поэтому справедливы
равенства:
=
и оценка (используется неравенство верное при
):
. Отсюда получаем следующую оценку
относительной погрешности матрицы возмущений
:
где
есть число обусловленности матрицы
. Итак, справедлива
Теорема 4. При малом относительном возмущении
матрицы А: (или
) и не слишком большом числе
обусловленности
матрицы
относительная погрешность обратной
матрицы возмущений
будет мала:
Предположим, что при указанных
условиях решаются уравнение , где
- невырожденная матрица, и
возмущенное уравнение
Эти уравнения будут иметь
единственные решения
и
. Обозначая относительные погрешности
возмущений через
получаем следующие оценки:
.
Это означает, что верна окончательная оценка
.
В полученной формуле важно, чтобы
коэффициент обусловленности а также число обусловленности
матрицы А, были не слишком
большими. В частности, имеем
, если
, то есть в этом случае
нулевая матрица.
Сформулируем основную теорему данного раздела.
Теорема 5.Пусть точное решение системы
, в которой вектор
и матрица
есть приближения вектора
и невырожденной (определитель
) квадратной матрицы
порядка m с известными относительными
погрешностями
и
.
Если выполняется неравенство ,
, или
, то для точного решения
системы
справедлива следующая оценка
относительной погрешности приближения
к
:
.
В случае отсутствия возмущения основной матрицы А
системы, тогда , имеем оценку из теоремы 1:
.
Отметим, что когда (много меньше 1), можно использовать
более простую, но менее точную формулу:
.
4. Пример исследования обусловленности вычислительной задачи с возмущенной системой ограничений ЗЛП
Во введении к статье был рассмотрен пример плохо обусловленной задачи линейного программирования, когда небольшое возмущение одного из коэффициентов уравнения системы ограничений приводит к совершенно другому решению. Сейчас мы рассмотрим аналог такой системы ограничений для удобства с меньшими коэффициентами и объясним причины такого явления, используя установленные теоремы,
,
,
;
.
Очевидно, задача имеет решение ,
Находим число обусловленности
невырожденной матрицы
в норме при
, вычислив одним из известных
способов обратную матрицу
,
Рассмотрим возмущенную систему ограничений
или
.
В первом неравенстве коэффициент 1 при
неизвестном заменен на
. Для этой задачи решением является
вектор
,
. Разница между решениями по норме (p=1)
огромна.
Матрица возмущенной системы невырожденная, имеет обратную, но
если мы заменим коэффициент
приближенным значением
, то возмущенная система
уже будет иметь вырожденную матрицу
с матрицей возмущения
. Абсолютная погрешность приближения
составляет в применяемой нами норме величину
. Устанавливаем, что достаточное
условие
или
, не вырождения приближенной матрицы
не выполнено, так как верно обратное
неравенство
, которое равносильно неравенству:
.
Достаточные условия теоремы 3 будут
выполнены, если задать ; тогда
и справедлива следующая оценка
относительной погрешности приближения решения
к решению
(естественно, считаем
):
Относительная погрешность коэффициентов
матрицы
имеет величину
, это указывает на возможность
увеличения погрешности решения до 226 раз
.
Чтобы обеспечить вычисление приближенного
решения ЗЛП с заданной точностью, например, чтобы относительная погрешность решения составляла величину не больше
некоторого постоянного числа
, достаточно требовать выполнения
неравенств:
Отсюда имеем оценку абсолютной погрешности матрицы
приближения, или оценку матрицы
возмущения :
.
Если считать , то
и коэффициент
в возмущенной системе ограничений можно
брать от 1 до 0,99991 включительно; остальные коэффициенты в системе считаем
точными или приближенными с примерно такого же порядка погрешностями (чтобы по
норме выполнялась оценка
). С такой точностью заданными
коэффициентами вычислительная задача хорошо обусловлена и может быть найдено
приближенное решение с требуемой точностью.
Заключение
Подводя итоги исследования, следует отметить, что реализация разработанных авторами утверждений в виде ряда приведенных теорем позволяет потребителю эффективно проводить исследования процессов и объектов в экономике на основе линейных математических моделей и более обоснованно получать решения вычислительных задач при работе с приближенными данными. Значимую роль в увеличении погрешности решения вычислительной задачи ЗЛП играет структура матрицы системы ограничений, а не величина ее определителя.
Источники:
2. Данилина Н.И., Дубровская Н.С.,Кваша О.П.,Смирнов Г.Л. Вычислительная математика. - М: Высшая школа, 1985. – 475 c.
3. Воеводин В.В. Линейная алгебра. - М: Наука, 1980. – 400 c.
4. Амосов А.А., Дубинский Ю.А.,Копченова Н.В. Вычислительные методы для инженеров. / Учебное пособие. - М.: Высш. шк., 1994. – 543 c.
5. Като Т. Теория возмущений линейных операторов. - М.: Мир, 1972. – 740 c.
6. Акоф Р., Сасиени М. Основы исследования операций. - М.: Мир, 1971. – 534 c.
7. Попов А.М. Экономико-математические методы и модели. / Учебник для прикладного бакалавриата 2-е изд., испр. и доп. - М.: Юрайт, 2014. – 479 c.
8. Хуснутдинов Р.Ш. Экономико-математические методы и модели. / Учебное пособие. - М.: НИЦ ИНФРА-М, 2014. – 224 c.
9. Юдин С.В. Математика и экономико-математические модели. / Учебное пособие. - М.: ИЦ РИОР, 2016. – 374 c.
10. Волков И.К., Загоруйко Е.А. Исследование операций. / Учебник для вузов. - М.: Изд. МГТУ им Н. Э. Баумана, 2000. – 436 c.
11. Томас Х. Кормен и др. Глава 29. Линейное программирование. / Алгоритмы: построение и анализ — 2-е изд. - М.: «Вильямс», 2006.
12. Юдин Д.Б., Гольдштейн Е.Г. Задачи и методы линейного программирования. - М., 2010.
13. Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. - М.: Наука, 1974. – 223 c.
14. Канторович Л.В., Акилов Г.П. Функциональный анализ. - М.: Наука, 1984. – 752 c.
15. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. / Изд. четвёртое, переработанное. - М.: Наука, 1976.
16. Марчук Г.И. Методы вычислительной математики. - Новосибирск: Наука, 1973. – 351 c.
17. Бабенко К.И. Основы численного анализа. - М.: Наука, 1986. – 743 c.
18. Бахвалов Н.С. Численные методы. / 3-е изд. - М., 2003.
19. Воеводин В.В. Математические основы параллельных вычислений. - М.: Изд-во МГУ, 1991. – 345 c.
20. Прасолов В.В. Задачи и теоремы линейной алгебры. - М.: Наука, Изд. фирма «Физ.-мат. лит.», 1996. – 302 c.
21. Стренг Г. Линейная алгебра и её применения. - М.:Мир, 1980. – 459 p.
22. Фаддеев Д.К. Лекции по алгебре. / 5-еизд. - СПб: Лань, 2007.
Страница обновлена: 26.11.2024 в 12:55:19