Разработка нейросетевой модели кластеризации экономики для анализа инвестиционной привлекательности предприятий
Малов Д.Н.1
, Летягина Е.Н.1![]()
1 Национальный исследовательский нижегородский государственный университет им. Н.И. Лобачевского, Россия, Нижний Новгород
Скачать PDF | Загрузок: 62 | Цитирований: 10
Статья в журнале
Креативная экономика (РИНЦ, ВАК)
опубликовать статью | оформить подписку
Том 13, Номер 8 (Август 2019)
Эта статья проиндексирована РИНЦ, см. https://elibrary.ru/item.asp?id=39347492
Цитирований: 10 по состоянию на 31.03.2023
Аннотация:
В современной экономической науке большое значение уделяется использованию методов математического моделирования при анализе инвестиционных процессов, определении инвестиционной привлекательности и эффективности инвестиционной деятельности, расчете инвестиционных рисков. В статье представлена модель кластеризации экономики, разработанная с использованием теории и научно-методического инструментария нейросетевого моделирования. Разработанная нейросетевая модель кластеризации позволяет определить инвестиционную привлекательность предприятий разных секторов экономики, их стоимость и чистую прибыль с учетом влияния всех элементов системы экономических отношений. Данная модель может быть использована для оценки инвестиционной привлекательности мезоэкономических систем и принятия управленческих решений инвесторами, собственниками и руководством предприятий, в том числе при их товарной и территориальной диверсификации.
Ключевые слова: экономическое развитие, инвестиционная привлекательность, кластерный подход, кластерная модель, нейросетевая модель
Источники:
2. Arnostova K., Hurnik J. The Monetary Transmission Mechanism in the Czech Republic (evidence from VAR analysis) // Czech National Bank, Working Paper. – 2005. – № 4. – С. 22.
3. Комков В.Н., Демиденко М.В., Черноокий В.А. Анализ влияния денежно-кредитной и валютной политики на реальный сектор экономики // Белорусская экономика: анализ, прогноз, регулирование. – 2005. – № 3. – С. 23-34.
4. Абакумова Ю.Г. Применение моделей векторных авторегрессий для исследования процентного канала трансмиссионного механизма монетарной политики Республики Беларусь // Экономика и управление. – 2011. – № 2. – С. 88-93.
5. Кундиус В.А. Кластерный подход в реализации стратегии инновационного развития АПК региона // Экономика региона. – 2011. – № 4(28). – С. 117-133.
6. Летягина Е.Н., Свеженцев А.Г. Методология кластерного подхода в экономике // Экономические науки. – 2011. – № 6(79). – С. 97-100.
Ширяев В.И. Финансовые рынки: Нейронные сети, хаос и нелинейная динамика. - М.: Издательская группа URSS, 2011. – 232 с.
8. Макаров И.Н., Евсин М.Ю., Кокарев А.Л., Крупина Т.А. Проблемы оценки бизнеса в условиях экономики России: методологические и отраслевые аспекты // Российское предпринимательство. – 2019. – № 1. – С. 59-70. – doi: 10.18334/rp.20.1.39719.
Guide to the Functional API. Keras.io. [Электронный ресурс]. URL: https://keras.io/getting-started/functional-api-guide ( дата обращения: 19.01.2019 ).
Официальный сайт рейтингового агентства «Эксперт». [Электронный ресурс]. URL: http://raexpert.ru/ratings/regions ( дата обращения: 11.05.2019 ).
11. Адамайтис Л.А., Агапитова E.Л. Применение сравнительной рейтинговой оценки в анализе инвестиционной привлекательности предприятия // Экономический анализ: теория и практика. – 2011. – № 41(248). – С. 27-34.
Ендовицкий Д.А.. Бабушкин В.А, Батурина Н.А. Анализ инвестиционной привлекательности организации. / Научное издание. - М.: КНОРУС, 2010.
Страница обновлена: 13.01.2026 в 12:54:56
Download PDF | Downloads: 62 | Citations: 10
Development of a neural network model of economic clustering for analysis of the investment attractiveness of enterprises
Malov D.N., Letyagina E.N.Journal paper
Creative Economy
Volume 13, Number 8 (August 2019)
Abstract:
In modern Economics, great importance is paid to the use of mathematical modeling methods during the analysis of investment processes, determining the investment attractiveness and efficiency of investment activities, calculation of investment risks. The article presents a model of economic clustering, developed using the theory and scientific and methodological tools of neural network modeling. The developed neural network model of clustering allows to determine the investment attractiveness of enterprises in different sectors of the economy, their cost and net profit, taking into account the influence of all elements of the system of economic relations. This model can be used to assess the investment attractiveness of meso-economic systems and management decision-making by investors, owners and management companies, including their product and territorial diversification.
Keywords: cluster approach, economic development, investment attractiveness, cluster model, neural network model
JEL-classification: O31, O33, O32
References:
Adamaytis L.A., Agapitova E.L. (2011). Primenenie sravnitelnoy reytingovoy otsenki v analize investitsionnoy privlekatelnosti predpriyatiya [The use of comparative rating estimation in the analysis of investment attractiveness of enterprise]. Economic analysis: theory and practice. (41(248)). 27-34. (in Russian).
Arnostova K., Hurnik J. (2005). The Monetary Transmission Mechanism in the Czech Republic (evidence from VAR analysis) Czech National Bank, Working Paper. (4). 22.
Brishtelev A.S. (2007). Protsentnyy kanal transmissionnogo mekhanizma monetarnoy politiki [Interest rate channel the transmission mechanism of monetary policy]. Bankovskiy vestnik. (1). 35-41. (in Russian).
Endovitskiy D.A.. Babushkin V.A, Baturina N.A. (2010). Analiz investitsionnoy privlekatelnosti organizatsii [Analysis of investment attractiveness of the organization] M.: KNORUS. (in Russian).
Guide to the Functional APIKeras.io. Retrieved January 19, 2019, from https://keras.io/getting-started/functional-api-guide
Komkov V.N., Demidenko M.V., Chernookiy V.A. (2005). Analiz vliyaniya denezhno-kreditnoy i valyutnoy politiki na realnyy sektor ekonomiki [Analysis of the impact of monetary and exchange rate policies on the real sector of the economy]. Belorusskaya ekonomika: analiz, prognoz, regulirovanie. (3). 23-34. (in Russian).
Kundius V.A. (2011). Klasternyy podkhod v realizatsii strategii innovatsionnogo razvitiya APK regiona [Сluster approach to realization of innovation development strategy for the agroindustrial complex of the region]. Economy of the region. (4(28)). 117-133. (in Russian).
Letyagina E.N., Svezhentsev A.G. (2011). Metodologiya klasternogo podkhoda v ekonomike [The methodology of cluster approach in economy]. Economic sciences. (6(79)). 97-100. (in Russian).
Makarov I.N., Evsin M.Yu., Kokarev A.L., Krupina T.A. (2019). Problemy otsenki biznesa v usloviyakh ekonomiki Rossii: metodologicheskie i otraslevye aspekty [Problems of business valuation in the Russian economy: methodological and sectoral aspects]. Russian Journal of Entrepreneurship. 20 (1). 59-70. (in Russian). doi: 10.18334/rp.20.1.39719.
Shiryaev V.I. (2011). Finansovye rynki: Neyronnye seti, khaos i nelineynaya dinamika [Financial markets: Neural networks, chaos and nonlinear dynamics] M.: Izdatelskaya gruppa URSS. (in Russian).
Официальный сайт рейтингового агентства «Эксперт». (in Russian). Retrieved May 11, 2019, from http://raexpert.ru/ratings/regions
