Использование данных с телематических устройств для прогнозирования вероятности аварии
Пильник Н.П.1,2
, Станкевич И.П.1
, Корищенко К.Н.3
1 Национальный исследовательский университет – высшая школа экономики
2 Центр перспективного финансового планирования, макроэкономического анализа и статистики финансов НИФИ
3 Российская академия народного хозяйства и государственной службы при Президенте РФ
Скачать PDF | Загрузок: 45
Статья в журнале
Глобальные рынки и финансовый инжиниринг *
Том 4, Номер 3 (Июль-Сентябрь 2017)
* Этот журнал не выпускается в Первом экономическом издательстве
Аннотация:
В работе анализируется влияние стиля вождения на вероятность попадания в ДТП. Показатели стиля вождения рассчитываются на основе данных с телематических устройств, устанавливаемых в автомобили, данные по аварийности предоставляются страховой компанией. Все ДТП разбиваются на три группы по тяжести в зависимости от соотношения убытков и страховой суммы, рассматриваются отдельные модели как для факта попадания в ДТП, так и для каждой из групп. Выделяются основные факторы, определяющие аварийность автомобилей. К ним относятся пробег, резкие ускорения, средняя скорость, максимальные скорости в разное время суток и ряд других. Делаются выводы для государственной политики в области регулирования дорожного движения.
Ключевые слова: стиль вождения, дорожно-транспортное происшествие, вероятность аварии
JEL-классификация: L62, L69
Источники:
2. Моисеева О.В., Клевеко В.И. Анализ аварийных случаев с участием пешеходов в г. Перми // Вестник Пермского национального исследовательского политехнического университета. Строительство и архитектура. – 2015. – № 4. – С. 134-143.
3. Anderson T. Comparison of spatial methods for measuring road accident ‘hotspots’: a case study of London // Journal of Maps. – 2007. – № 1. – С. 55-63.
4. Bíl M., Andrášik R., Janoška Z. Identification of hazardous road locations of traffic accidents by means of kernel density estimation and cluster significance evaluation // Accident Analysis & Prevention. – 2013. – С. 265-273.
5. Durduran S.S. A decision making system to automatic recognize of traffic accidents on the basis of a GIS platform // Expert Systems with Applications. – 2010. – № 12. – С. 7729-7736.
6. Elliott, Mark A., Christopher J. Armitage, and Christopher J. Baughan Drivers' compliance with speed limits: an application of the theory of planned behavior // Journal of Applied Psychology. – 2003. – № 5. – С. 964.
7. Erdogan S. et al Geographical information systems aided traffic accident analysis system case study: city of Afyonkarahisar // Accident Analysis & Prevention. – 2008. – № 1. – С. 174-181.
8. French, Davina J., et al Decision-making style, driving style, and self-reported involvement in road traffic accidents // Ergonomics. – 1993. – № 6. – С. 627-644.
9. Kashani, Ali Tavakoli, Afshin Shariat Mohaymany Analysis of the traffic injury severity on two-lane, two-way rural roads based on classification tree models // Safety Science. – 2011. – № 10. – С. 1314-1320.
10. Kashani, Ali Tavakoli, Afshin Shariat-Mohaymany, and Andishe Ranjbari Analysis of factors associated with traffic injury severity on rural roads in Iran // Journal of injury and violence research 4. – 2012. – № 1. – С. 36.
11. Kosuge, Ritsu, et al Predictors of driving outcomes including both crash involvement and driving cessation in a prospective study of Japanese older drivers // Accident Analysis & Prevention. – 2017. – № 106. – С. 131-140.
12. Olszewski P. et al Pedestrian fatality risk in accidents at unsignalized zebra crosswalks in Poland // Accident Analysis & Prevention. – 2015. – С. 83-91.
13. Park, Ho-Chul, et al Cross-classified multilevel models for severity of commercial motor vehicle crashes considering heterogeneity among companies and regions // Accident Analysis & Prevention. – 2017. – № 106. – С. 305-314.
14. Quddus M.A. Time series count data models: an empirical application to traffic accidents // Accident Analysis & Prevention. – 2008. – № 5. – С. 1732-1741.
15. Taubman-Ben-Ari, Orit, Mario Mikulincer, Omri Gillath The multidimensional driving style inventory—scale construct and validation // Accident Analysis & Prevention. – 2004. – № 3. – С. 323-332.
16. Tesema, Tibebe Beshah, Ajith Abraham, Crina Grosan Rule mining and classification of road traffic accidents using adaptive regression trees // International Journal of Simulation. – 2005. – № 10-11. – С. 80-94.
Страница обновлена: 15.09.2025 в 09:42:17
Download PDF | Downloads: 45
Use of data from telematic devices to predict the probability of accident
Pilnik N.P., Stankevich I.P., Korishchenko K.N.Journal paper
*
Volume 4, Number 3 (July-September 2017)
* Этот журнал не выпускается в Первом экономическом издательстве
Abstract:
The article analyzes the impact of driving style on the probability of getting into an accident. Driving style indicators are calculated on the basis of data from telematic devices installed in cars, accident data are provided by the insurance company. All accidents are divided into three groups according to severity, depending on the ratio of losses and the sum insured, individual models are considered both for the fact of getting into an accident and for each of the groups. We mark out the main factors that determine the accident rate of cars; they include mileage, sudden acceleration, average speed, maximum speeds at different times of the day, and a number of other factors. We draw conclusions for the state policy in the field of traffic regulation
Keywords: driving style, road traffic accident, probability of accident
JEL-classification: L62, L69
