Нозокомиальная пневмония. Избранные вопросы диагностики и лечения

Мороз В.В.1, Голубев А.М.2, Кузовлев А.Н.3
1 ФНКЦ РР, МГМСУ им. А.И. Евдокимова, Россия
2 НИИ общей реаниматологии им. В.А. Неговского ФНКЦ РР, Российский университет дружбы народов, Россия
3 НИИ общей реаниматологии им. В.А. Неговского ФНКЦ РР

Научное издание / монография

Выпущено ООО Издательство «Креативная экономика»

Мороз В.В., Голубев А.М., Кузовлев А.Н. (2019) Нозокомиальная пневмония. Избранные вопросы диагностики и лечения  / ISBN: 978-5-91292-293-0
  • Авторы: Мороз В.В., Голубев А.М., Кузовлев А.Н.
  • Год издания: 2019
  • УДК: 616.24-002
  • ББК: 54.12
  • Тираж: 500 экз.
  • Обложка: Твердая обложка / переплет
  • Страниц: 238
  • Усл. печ. л.: 13.6
  • ISBN: 978-5-91292-293-0
  • DOI: 10.18334/9785912922930
  • Эта книга проиндексирована РИНЦ, см. https://elibrary.ru/item.asp?id=42364377

    Книга доступна в ЭБС ЛАНЬ: https://e.lanbook.com/book/165585

     

    Цитировать книгу:
    Мороз В.В., Голубев А.М., Кузовлев А.Н. Нозокомиальная пневмония. Избранные вопросы диагностики и лечения. М.:Креативная экономика, 2019. – 238 с. – ISBN: 978-5-91292-293-0 – doi: 10.18334/9785912922930

    Книга в каталоге РГБ: https://search.rsl.ru/ru/record/01010133072

    В издательстве открыта вакансия ответственного редактора научного журнала с возможностью удаленной работы
    Подробнее...

    Рецензенты:
    Долина О.А. - доктор медицинских наук, профессор, заслуженный деятель науки Российской Федерации
    Козлов И.А. - доктор медицинских наук, профессор, профессор кафедры анестезиологии-реаниматологии факультета усовершенствования врачей ГБУЗ МО МОНИКИ им. М.Ф. Владимирского

    Аннотация:
    В данной монографии рассмотрены проблемы эпидемиологии, патогенеза, диагностики, принципы лечения и профилактики нозокомиальной пневмонии. Изложены как результаты собственных научных исследований, посвященных генетике критических состояний, информативности новых молекулярных биомаркеров, методов ингаляционной антибиотикотерапии и искусственной вентиляции легких, так и наиболее современные отечественные и международные рекомендации по ведению данной категории пациентов. Книга предназначена для врачей – анестезиологов-реаниматологов, терапевтов, хирургов.

    Ключевые слова: нозокомиальная пневмония, биомаркер, критические состояния, генетика, диагностика, прогноз, лечение, антибиотики, искусственная вентиляция легких

    Источники:

    1. Чучалин А.Г. (ред.) Респираторная медицина. Руководство. − Москва: ГЭОТАР-Медиа, 2007. – 1616 с.
    2. Гельфанд Б.Р. Нозокомиальная пневмония у взрослых. Российские национальные рекомендации. − М.: МИА, 2016. − 176 с.
    3. Kalil A., Metersky M., Klompas M. et al. Management of Adults With Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis. 2016; 63 (5): e61-e111.
    4. Trouillet JL, Chastre J., Vuagnat A., et al. Ventilator-associated pneumonia caused by potentially drug-resistant bacteria. Am J Respir Crit Care Med 1998; 157: 531–539.
    5. Martin-Loeches I., Torres A., Rinaudo M., et al. Resistance patterns and outcomes in intensive care unit (ICU)-acquired pneumonia. Validation of European Centre for Disease Prevention and Control (ECDC) and the Centers for Disease Control and Prevention (CDC) classification of multidrug resistant organisms. J Infect 2015; 74: 213–222.
    6. Martin-Loeches I., Deja M., Koulenti D., et al. Potentially resistant microorganisms in intubated patients with hospital-acquired pneumonia: the interaction of ecology, shock and risk factors. Intensive Care Med 2013; 39: 672–681.
    7. Ferrer M., Liapikou A., Valencia M., et al. Validation of the American Thoracic Society-Infectious Diseases Society of America guidelines for hospital-acquired pneumonia in the intensive care unit. Clin Infect Dis 2010; 50: 945–952.
    8. Restrepo MI, Peterson J., Fernandez JF, et al. Comparison of the bacterial etiology of early-onset and late-onset ventilator-associated pneumonia in subjects enrolled in 2 large clinical studies. Respir Care 2013; 58: 1220–1225.
    9. Мороз В.В., Голубев А.М. Принципы диагностики ранних проявлений острого повреждения легких. Общая реаниматология. – 2006. – Т. 2. – № 4. – С. 5 7.
    10. Мороз В.В., Голубев А.М. Классификация острого респираторного дистресс-синдрома. Общая реаниматология. – 2007. – Т. 3. – № 5 6. – С. 7−9.
    11. Яковлев С.В., Суворова М.П., Белобородов В.Б., Басин Е.Е., Елисеева Е.В., Ковеленов С.В, и члены исследовательской группы ЭРГИНИ. Распространенность и клиническое значение нозокомиальных инфекций в лечебных учреждениях России: исследование ЭРГИНИ // Антибиотики и химиотерапия – 2016. – Т. 61. – № 5 6. – С. 32−42.
    12. Bekaert M., Timsit J., Vansteelandt S., Depuydt P., Vésin A., Garrouste-Orgeas M., Decruyenaere J., Clec'h C., Azoulay E., Benoit D.; Outcomerea Study Group. Attributable mortality of ventilator-associated pneumonia: A reappraisal using causal analysis. //. Am. J. Respir. Crit. Care Med. 2011; 184 (10): 1133–1139.
    13. Olivieri A., Del Monte D., Benacchio L., Bonvicini D., Baiocchi M., Allegri C., Fornasier L., Carlot A., Psimadas I., Bonato A., Bernasconi M., Medè A., Bianchin A., Peta M., Caravello M., Rampazzo R., Pedrini A., Dalsasso M., Saggioro D., Zennaro A., Ori C., Pizzirani E. An Observational Veneto Research on Ventilator-Associated Pneumonia (OVeRVAP): attributable mortality and cumulative incidence of ventilator-associated pneumonia. Minerva Anestesiol. 2018 Jul; 84 (7): 811 819.
    14. Melsen WG, Rovers MM, Bonten MJ. Ventilator-associated pneumonia and mortality: a systematic review of observational studies. Crit Care Med 2009; 37: 2709–2718.
    15. Melsen WG, Rovers MM, Koeman M., et al. Estimating the attributable mortality of ventilator-associated pneumonia from randomized prevention studies. Crit Care Med 2011; 39: 2736–2742.
    16. Klompas M., Kleinman K., Murphy M. Descriptive epidemiology and attributive morbidity of ventilator-associated events. //. Infect. Control.Hosp. Epidemiol. 2014. 35 (5): 502–510.
    17. Kuzovlev A., Moroz V., Goloubev A., Polovnikov S. Diagnosis of acute respiratory distress syndrome in nosocomial pneumonia. //. Semin. Cardiothorac. Vasc. Anesth. 2010; 14 (4): 231 241.
    18. Мороз В.В., Голубев А.М., Марченков Ю.В., Власенко А.В., Карпун Н.А., Яковлев В.Н., Алексеев В.Г., Бобринская И.Г., Решетняк В.И., Кузовлев А.Н., Смелая Т.В. Острый респираторный дистресс-синдром: классификация, диагностика, дифференцированное лечение: учебное пособие. − Москва: НИИОР, 2013. – 84 с.
    1. Гельфанд Б.Р. Нозокомиальная пневмония у взрослых. Российские национальные рекомендации. − М.: МИА, 2016. − 176 с.
    2. Дмитриева Н.В., Петухова И.Н. (ред.) Послеоперационные инфекционные осложнения. Практическое руководство. – Москва: Практическая медицина, 2013. – 422 с.
    3. Кузьменков А.Ю., Трушин И.В., Авраменко А.А., Эйдельштейн М.В., Дехнич А.В., Козлов Р.С. AMRmap: Интернет-платформа мониторинга антибиотикорезистентности. Клиническая микробиология и антимикробная химиотерапия. – 2017. – Т. 19. – № 2. – С. 84–90.
    4. Susan E., Coffin MM, Klompas M. et al. Strategies to prevent ventilator associated pneumonia in acute care hospitals. Infection Control and Hospital Epidemiology. 2008; 29: S31–40.
    5. Кузовлев А.Н., Гречко А.В. Ингаляционные антибиотики в реаниматологии: состояние, проблемы и перспективы развития. Общая реаниматология. 2017; 13 (5): С. 69 85.
    6. Martin-Loeches I., Povoa P., Rodríguez A., Curcio D., Suarez D., Mira JP, Cordero ML, Lepecq R., Girault C., Candeias C., Seguin P., Paulino C., Messika J., Castro AG, Valles J., Coelho L., Rabello L., Lisboa T., Collins D., Torres A., Salluh J., Nseir S. TAVeM study. Incidence and prognosis of ventilator-associated tracheobronchitis (TAVeM): a multicentre, prospective, observational study. Lancet Respir Med. 2015 Nov; 3 (11): 859 68.
    7. Craven DE, Lei Y., Ruthazer R. et al. Incidence and outcomes of ventilator-associated tracheobronchitis and pneumonia. Am J Med 2013; 126: 542–549.
    8. Nseir S., Deplanque X., Di Pompeo C. et al. A Risk factors for relapse of ventilator-associated pneumonia related to nonfermenting Gram negative bacilli: a case-control study. J Infect. 2008; 56: 319–325.
    9. Luna CM, Aruj P., Niederman MS et al. Appropriateness and delay to initiate therapy in ventilator-associated pneumonia. Eur Respir J. 2006, 27: 158–164.
    10. Torres A., Niederman MS., Chastre J., Ewig S, Fernandez-Vandellos P., Hanberger H., Kollef M., Li Bassi G., Luna CM, Martin-Loeches I., Paiva JA, Read RC, Rigau D., Timsit JF, Welte T., Wunderink R.International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquiredpneumonia and ventilator-associated pneumonia: Guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociación Latinoamericana del Tórax (ALAT). Eur Respir J. 2017 Sep 10; 50 (3). pii: 1700582.
    11. Mizgerd JP. Pathogenesis of severe pneumonia: advances and knowledge gaps. Curr Opin Pulm Med. 2017 May; 23 (3): 193 197.
    12. Савельев В.С., Гельфанд Б.Р. Абдоминальная хирургическая инфекция: клиника, диагностика, антимикробная терапия. − Москва: Litterra, 2006. – 168 с.
    13. Мороз В.В., Голубев А.М. Принципы диагностики ранних проявлений острого повреждения легких. // Общая реаниматология. − 2006. – Т. 2. – № 4. – С. 5 7.
    14. Мороз В.В., Голубев А.М. Классификация острого респираторного дистресс-синдрома. // Общая реаниматология. − 2007. – Т. 3. – № 5 6. – С. 7−9.
    15. Марченков Ю.В., Власенко А.В., Мороз В.В., Яковлев В.Н. Эволюция диагностики и лечения острого респираторного дистресс-синдрома на основе новейших медицинских технологий. // Общая реаниматология. – 2012. – Т. 8. – № 4. – С. 22 30.
    16. Huang X., Xiu H., Zhang S., Zhang G. The Role of Macrophages in the Pathogenesis of ALI/ARDS. Mediators Inflamm. 2018 May 13; 2018: 1264913.
    1. Salnikova L., Smelaya T., Vesnina I., Golubev A., Moroz V. Genetic susceptibility to nosocomial pneumonia, acute respiratory distress syndrome and poor outcome in patients at risk of critical illness. Inflammation. 2014; 37 (2): 295 305.
    2. Salnikova L., Smelaya T., Golubev A., Rubanovich A., Moroz V. CYP1A1, GCLC, AGT, AGTR1 gene-gene interactions in community-acquired pneumonia pulmonary complications. Mol. Biol. Rep. 2013; 40 (11): 6163 6176.
    3. Salnikova L., Smelaya T., Moroz V., Golubev A., Rubanovich A. Functional polymorphisms in the CYP1A1, ACE, and IL-6 genes contribute to susceptibility to community-acquired and nosocomial pneumonia. Int. J. Infect. Dis. 2013; 17 (6): 433 442.
    4. Salnikova L., Smelaya T., Moroz V., Golubev A., Rubanovich A. Host genetic risk factors for community-acquired pneumonia. Gene. 2013; 518 (2): 449 456.
    5. Morrell ED, O'Mahony DS, Glavan BJ, Harju-Baker S, Nguyen C, Gunderson S, Abrahamson A, Radella F 2nd, Rona G, Black RA, Wurfel MM Genetic Variation in MAP3K1 Associates with Ventilator-Free Days in Acute Respiratory Distress Syndrome. Am J Respir Cell Mol Biol. 2018; 58 (1): 117 125.
    6. Мороз В.В., Смелая Т.В., Голубев А.М., Сальникова Л.Е. Генетика и медицина критических состояний: от теории к практике. // Общая реаниматология. – 2012. – Т. 8. – № 4. – С. 5 12.
    7. Horhat FG, Gundogdu F., David LV, Boia ES, Pirtea L., Horhat R., Cucui-Cozma A., Ciuca I., Diaconu M., Nitu R., Licker M., Horhat DI, Rogobete AF, Moise ML, Tataru C. Early Evaluation and Monitoring of Critical Patients with Acute Respiratory Distress Syndrome (ARDS) Using Specific Genetic Polymorphisms. Biochem Genet. 2017; 55 (3): 204 211.
    8. Copland I., Post M. Understanding the mechanisms of infant respiratory distress and chronic lung disease. Am. J. Respir. Cell Mol. Biol. 2002; 26 (3): 261 265.
    9. Rimpau S., Joffe AR. Interpretation of gene associations with risk of acute respiratory distress syndrome: P values, Bayes factors, positive predictive values, and need for replication. Crit Care. 2016 Dec 21; 20 (1): 402.
    10. van de Vosse E., van Dissel J.T., Ottenhoff T.H. Genetic deficiencies of innate immune signalling in human infectious disease. Lancet Infect dis. 2009; 9 (11): 688 698.
    11. Smelaya TV, Belopolskaya OB, Smirnova SV, Kuzovlev AN, Moroz VV, Golubev AM, Pabalan NA, Salnikova LE. Genetic dissection of host immune response in pneumonia development and progression. Sci Rep. 2016 Oct 11; 6: 35021.
    12. Angus D., Burgner D., Wunderink R., Mira J., Gerlach H., Wiedermann C., Vincent J. The PIRO concept: P is for predisposition. Crit. Care. 2003; 7 (3): 248 251.
    13. Granja C., Póvoa P., Lobo C., Teixeira-Pinto A., Carneiro A., Costa-Pereira A. The predisposition, infection, response and organ failure (Piro) sepsis classification system: results of hospital mortality using a novel concept and methodological approach. PLoS One. 2013; 8 (1): e53885.
    14. Sun X., Ma S., Wade M., Acosta-Herrera M., Villar J., Pino-Yanes M., Zhou T., Liu B., Belvitch P., Moitra J., Han Y., Machado R., Noth I., Natarajan V., Dudek S., Jacobson J., Flores C., Garcia J. Functional promoter variants in sphingosine 1-phosphate receptor 3 associate with susceptibility to sepsis-associated acute respiratory distress syndrome. Am. J. Physiol. Lung Cell Mol. Physiol. 2013; 305 (7): 467 477.
    15. Смелая Т.В., Кузовлев А.Н., Мороз В.В., Голубев А.М., Белопольская О.Б., Сальникова Л.Е. Молекулярно-генетические маркеры нозокомиальной пневмонии и острого респираторного дистресс-синдрома. // Общая реаниматология. – 2015. – Т. 11. – № 3. – С. 24–38.
    16. Mаatsuda A., Kishi T., Jacob A., Aziz M., Wang P. Association between insertion/deletion polymorphism in angiotensin-converting enzyme gene and acute lung injury/acute respiratory distress syndrome: a meta-analysis. BMC Med Genet. 2012; (13): С. 76.
    17. Marshall R., Webb S., Bellingan G., Montgomery H., Chaudhari B., McAnulty R., Humphries S., Hill M., Laurent G. Angiotensin converting enzyme insertion/deletion polymorphism is associated with susceptibility and outcome in acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 2002; 166 (5): 646 650.
    18. Cardinal-Fernández P., Ferruelo A., El-Assar M., Santiago C., Gómez-Gallego F., Martín-Pellicer A., Frutos-Vivar F., Peñuelas O., Nin N., Esteban A., Lorente J. Genetic predisposition to acute respiratory distress syndrome in patients with severe sepsis. Shock. 2013; 39 (3): С. 255 260.
    19. Ahasic A., Zhao Y., Su L., Sheu C., Thompson B., Christiani D. Adiponectin gene polymorphisms and acute respiratory distress syndrome susceptibility and mortality. PLoS One. 2014; 9 (2): 89–170.
    20. Tsantes A., Kopterides P., Bonovas S., Bagos P., Antonakos G., Nikolopoulos G., Gialeraki A., Kapsimali V., Kyriakou E., Kokori S., Dima K., Armaganidis A., Tsangaris I. Effect of angiotensin converting enzyme gene I/D polymorphism and its expression on clinical outcome in acute respiratory distress syndrome. Minerva Anestesiol. 2013; 79 (8): 861 870.
    21. Belopolskaya O., Smelaya T., Moroz V., Golubev A., Salnikova L. Clinical associations of host genetic variations in the genes of cytokines in critically ill patients. Clin Exp Immunol. 2015; 180 (3): 531 41.
    22. Villar J., Cabrera-Benítez N., Ramos-Nuez A., Flores C., García-Hernández S., Valladares F., López-Aguilar J., Blanch L., Slutsky A. Early activation of pro-fibrotic WNT5A in sepsis-induced acute lung injury. Crit. Care. 2014; 18 (5): 568.
    23. Miyashita T., Ahmed AK, Nakanuma S., Okamoto K., Sakai S., Kinoshita J., Makino I., Nakamura K., Hayashi H., Oyama K., Tajima H., Takamura H., Ninomiya I., Fushida S., Harmon JW, Ohta T. A Three-phase Approach for the Early Identification of Acute Lung Injury Induced by Severe Sepsis. In Vivo. 2016 Jul-Aug; 30 (4): 341 9
    24. Rotunno M., Yu K., Lubin J.H., Consonni D., Pesatori A.C., Goldstein A.M., Goldin L.R., Wacholder S., Welch R., Burdette L., Chanock S.J., Bertazzi P.A., Tucker M.A., Caporaso N.E., Chatterjee N., Bergen A.W., Landi M.T. Phase I metabolic genes and risk of lung cancer: multiple polymorphisms and mRNA expression. PLoS One. 2009; 4 (5): e5652.
    25. Busbee P.B., Rouse M., Nagarkatti M., Nagarkatti P.S. Use of natural AhR ligands as potential therapeutic modalities against inflammatory disorders. Nutr. Rev. 2013; 71 (6): 353 369.
    26. Gargaro M., Pirro M., Romani R., Zelante T., Fallarino F. Aryl Hydrocarbon Receptor-Dependent Pathways in Immune Regulation. Am J Transplant. 2016 Aug; 16 (8): 2270 6.
    27. Roman ÁC, Carvajal-Gonzalez JM, Merino JM, Mulero-Navarro S., Fernández-Salguero PM. The aryl hydrocarbon receptor in the crossroad of signalling networks with therapeutic value. Pharmacol Ther. 2018 May; 185: 50 63.
    28. Rohlman D., Pham D., Yu Z., Steppan L.B., Kerkvliet N.I. Aryl hydrocarbon receptor-mediated perturbations in gene expression during early stages of CD4(+) T-cell differentiation. Front Immunol. 2012; (3): 223.
    29. Esser C., Rannug A. The aryl hydrocarbon receptor in barrier organ physiology, immunology, and toxicology. Pharmacol. Rev. 2015; 67 (2): 259 79.
    30. Gradman E.H. Evolving understanding of the renin-angiotensin–aldosterone system: Pathophysiology and targets for therapeutic intervention. American Heart Journal. 2009; (157): S1–S6.
    1. Чучалин А.Г. (ред.) Респираторная медицина. Руководство. – Москва: ГЭОТАР-Медиа, 2007. – 1616 с.
    2. Сундуков Д.В., Голубев А.М. Морфология адаптационных процессов в дыхательной системе в остром периоде политравмы. // Общая реаниматология. – 2006. – Т. 2. – № 4. – С. 26–30.
    3. Hoelz C., Negri E.M., Lichtenfels A.J. et al. Morphometric differences in pulmonary lesions in primary and secondary ARDS. A preliminary study in autopsies. Pathol. Res. Pract. 2001; (197): 521–530.
    4. Смелая Т.В., Мороз В.В., Голубев А.М. Клинико-морфологические особенности нозокомиальной пневмонии у больных с перитонитом. // Общая реаниматология. – 2008. – Т. 4. – № 3. – С. 59 65.
    5. Corley D.E., Kitrland S.H., Winterbauer R.H. et al. Reproducibility of the histologic diagnosis of pneumonia among a panel of four pathologist: analysis of a gold standard. Chest. 1997; 112 (2): 458 465.
    6. Гельфанд Б.Р. Нозокомиальная пневмония у взрослых. Российские национальные рекомендации. – М.: МИА, 2016. – 176 с.
    7. Мороз В.В., Голубев А.М., Марченков Ю.В., Власенко А.В., Карпун Н.А., Яковлев В.Н., Алексеев В.Г., Бобринская И.Г., Решетняк В.И., Кузовлев А.Н., Смелая Т.В. Острый респираторный дистресс-синдром: классификация, диагностика, дифференцированное лечение: учебное пособие. – Москва: НИИОР, 2013. – 84 с.
    8. Libby L., Gelbman B., Altorki N., Christos P., Libby D. Surgical lung biopsy in adult respiratory distress syndrome: a meta-analysis. Ann Thorac Surg. 2014; 98 (4): 1254–1260.
    9. Guerin C., Bayle F., Leray V., Debord S., Stoian A., Yonis H., Roudaut J., Bourdin G., Devouassoux-Shisheboran M., Bucher E., Ayzac L., Lantuejoul S., Philipponnet C., Kemeny J., Souweine B., Richard J.C. Open lung biopsy in nonresolving ARDS frequently identifies diffuse alveolar damage regardless of the severity stage and may have implications for patient management. Intensive Care Med. 2015; 41 (2): 222–230.
    10. Philipponnet C., Cassagnes L., Pereira B., Kemeny JL, Devouassoux-Shisheboran M., Lautrette A., Guerin C., Souweine B. Diagnostic yield and therapeutic impact of open lung biopsy in the critically ill patient. PLoS One. 2018 May 25; 13 (5): e0196795.
    11. Ortiz G., Garay M., Mendoza D., Cardinal-Fernández P. Impact and safety of open lung biopsy in patients with acute respiratory distress syndrome (ARDS). Med Intensiva. 2018 Feb 28. pii: S0210–5691(18): 30018-4.
    12. Allardet-Servent J. Open Lung Biopsy in Nonresolving Acute Respiratory Distress Syndrome: Anything More Relevant? Crit Care Med. 2018 Jun; 46 (6): 1017–1018.
    13. Patel S., Karmpaliotis D., Ayas N. The role of open-lung biopsy in ARDS. Chest. 2004; 125 (1): 197–202.
    14. Malhotra A., Patel S. Lung biopsy in ARDS: is it worth the risk? Crit. Care. 2006; 10(4): 160.
    15. Agarwal R., Srinivas R., Nath A., Jindal S.K. Is the mortality higher in the pulmonary vs the extrapulmonary ARDS? A meta analysis. Chest. 2008; 133 (6): 1463–1473.
    16. Tejera P., Meyer N., Chen F., Feng R., Zhao Y., O'Mahony D., Li L., Sheu C., Zhai R., Wang Z., Su L., Bajwa E., Ahasic A., Clardy P., Gong M., Frank A, Lanken P., Thompson B., Christie J., Wurfel M., O'Keefe G., Christiani D. Distinct and replicable genetic risk factors for acute respiratory distress syndrome of pulmonary orextrapulmonary origin. Med. Gent. 2012; 49 (11): 671 680.
    17. Tshernig T., Pabst R. What is relevance of different lung compartments& BMC Pulm. Med. 2009; 9: 39
    18. Holt P.G. Regulation of antigen-presenting cell function(s) in lung and airway tissues. Eur. Respir. J. 1993; 6 (1): 120–129.
    19. Матвеева В.Г., Головкин А.С., Григорьев Е.В., Понасенко А.В. Роль триггерного рецептора, экспрессируемого на миелоидных клетках, в активации врожденного иммунитета. Общая реаниматология. 2011; VII (3): 70 74.
    20. Randall T.D. Bronchus-associated lymphoid tissue (BALT) structure and function. Adv. Immunol. 2010; 107: 187 241.
    21. Pabst R., Tschernig T. Perivascular capillaries in the lung: an important but neglected vascular bed in immune reactions? J Allergy Clin Immunol. 2002; 110 (2): 209–14.
    22. Qiu H., Kuolee R., Harris G., Van Rooijen N., Patel G., Chen W. Role of macrophages in early host resistance to respiratory Acinetobacter baumannii infection. PLoS One. 2012; 7 (6): e40019.
    23. Gordon S.B., Read R.C. Macrophage defences against respiratory tract infections: The immunology of childhood respiratory infections. Br. Med. Bull. 2002; 61: 45–61.
    24. Голубев А.М., Мороз В.В., Сундуков Д.В. Патогенез острого респираторного дистресс-синдрома. // Общая реаниматология. – 2012. – Т. 8. – № 4. – С. 13 21.
    25. Williams B.J., Dehnbostel J., Blackwell T.S. Pseudomonas aeruginosa: host defence in lung diseases. Respirology. 2010; 15 (7): 1037–1056.
    26. Sadikot R.T., Zeng H., Joo M., Everhart M. et al. Targeted immunomodulation of the NF-κB pathway in airway epithelium impacts host defense against Pseudomonas aeruginosa. J. Immunol. 2006; 176 (8): 4923–4930
    27. Heier I., Malmstrom K., Sajantila A. Characterisation of bronchus-associated lymphoid tissue and antigen-presenting cells in central airway mucosa of children. Thorax 2011; 66 (2): 151 156.
    28. Hartl D., Tirouvanziam R., Laval J., Greene CM, Habiel D., Sharma L., Yildirim AÖ, Dela Cruz CS, Hogaboam CM. Innate Immunity of the Lung: From Basic Mechanisms to Translational Medicine. J Innate Immun. 2018 Feb 13. doi: 10.1159/000487057.
    29. Hatzidaki E., Nakos G., Galiatsou E., Lekka M. Impaired phospholipases A production by stimulated macrophages from patients with acute respiratory distress syndrome. Biochim. Biophys. Acta. 2010; (1802): 986–994.
    30. Yuan Q., Jiang Y.W., Fang Q.H. Improving effect of Sivelestat on lipopolysaccharide-induced lung injury in rats. APMIS. 2014; 122 (9): 810 817
    31. Pu S., Wang D., Liu D., Zhao Y., Qi D., He J., Zhou G.. Effect of sivelestat sodium in patients with acute lung injury or acute respiratory distress syndrome: a meta-analysis of randomized controlled trials. BMC Pulm Med. 2017 Nov 21; 17 (1): 148.
    32. Shirey K., Lai W., Scott A. The TLR4 antagonist Eritoran protects mice from lethal influenza infection. Nature. 2013; 497(7450): 498–502.
    33. Chang YW, Tseng CP, Lee CH, Hwang TL, Chen YL, Su MT, Chong KY, Lan YW, Wu CC, Chen KJ, Lu FH, Liao HR, Hsueh C., Hsieh PW. β-Nitrostyrene derivatives attenuate LPS-mediated acute lung injury via the inhibition of neutrophil-platelet interactions and NET release. Am J Physiol Lung Cell Mol Physiol. 2018 Apr 1; 314 (4): L654-L669.
    34. Yang J., Tian H., Huang X. Tephrosin attenuates sepsis induced acute lung injury in rats by impeding expression of ICAM-1 and MIP-2. Microb Pathog. 2018 Apr; 117: 93 99.
    35. Jayne JG, Bensman TJ, Schaal JB, Park AYJ, Kimura E., Tran D., Selsted ME, Beringer PM. Rhesus θ-Defensin-1 Attenuates Endotoxin-induced Acute Lung Injury by Inhibiting Proinflammatory Cytokines and Neutrophil Recruitment. Am J Respir Cell Mol Biol. 2018 Mar; 58 (3): 310 319.
    36. Zou Y., Bao S., Wang F., Guo L., Zhu J., Wang J., Deng X., Li J. FN14 Blockade on Pulmonary Microvascular Endothelial Cells Improves the Outcome of Sepsis-Induced Acute Lung Injury. Shock. 2018 Feb; 49 (2): 213 220.
    37. Moriondo A., Marcozzi C., Bianchin F., Reguzzoni M., Severgnini P., Protasoni M., Raspanti M., Passi A., Pelosi P., Negrini D. Impact of mechanical ventilation and fluid load on pulmonary glycosaminoglycans. Respir Physiol Neurobiol. 2012; 181 (3): 308 320.
    38. Wilson M., Patel B., Takata M. Ventilation with ‘clinically-relevant’ high tidal volumes does not promote stretch-induced injury in the lungs of healthy mice. Crit Care Med. 2012; 40 (10): 2850–2857.
    39. Голубев А.М., Мороз В.В., Лысенко Д.В., Кузовлев А.Н., Остапченко Д.А. ИВЛ-индуцированное острое повреждение легких (экспериментальное, морфологическое исследование). // Общая реаниматология. – 2006. – Т. 2. – № 4. – С. 8 12.
    40. Sender V., Stamme C. Lung cell-specific modulation of LPS-induced TLR4 receptor and adaptor localization. Commun. Integr. Biol. 2014; (7): e29053.
    41. Sender V., Stamme C. Lung cell-specific modulation of LPS-induced TLR4 receptor and adaptor localization. Commun. Integr. Biol. 2014; (7): e29053.
    42. Tanimura N., Saitoh S., Matsumoto F., Akashi-Takamura S., Miyake K. Roles for LPS-dependent interaction and relocation of TLR4 and TRAM in TRIF-signaling. Biochem. Biophys. Res.Commun. 2008; (368): 94–99.
    43. Sender V., Moulakakis C., Stamme C. Pulmonary surfactant protein A enhances endolysosomal trafficking in alveolar macrophages through regulation of Rab7. J. Immunol. 2011; (186): 2397–2411.
    44. Иваницкий Г.Р. Как перфторан обеспечивает газотранспорт. // В кн.: Перфторорганические соединения в биологии и медицине: сборник трудов 10-й Междунар. конф., июль 1998 г. Пущино. – Пущино, 1999. – С. 229 243.
    45. Мороз В.В., Крылов Н.Л. Некогда спорные, но сегодня решенные вопросы применения перфторана в клинике. // В кн.: Перфторорганические соединения в биологии и медицине: сборник трудов 10-й Междунар. конф., июль 1998 г. Пущино. – Пущино, 1999. – С. 25 32.
    46. Мороз В.В., Власенко А.В., Закс И.О. Жидкостная вентиляция легких, ее возможности и перспективы (современное состояние вопроса). // Анестезиология и реаниматология. – 2001. – № 6. – С. 66 73
    47. Ливанов Г.А., Колбасов С.Е., Мороз В.В. Применение перфторана в виде ингаляций для лечения токсического отека легких. В кн. Перфторуглеродные соединения в медицине и биологии: сборник материалов XII Межд. конференции, 25–26 июля 2002, Пущино. – Пущино, 2003.
    48. Hou S., Ding H., Ly Q., Yin X., Song J., Landen N.X., Fan H. Therapeutic effect of intravenous infusion of perfluorocarbon emulsion on LPS-induced acute lung injury. PLos One. 2014; 9 (1): e87826.
    49. Wang X., Zhang J., Li X., Liu Y., Yang H., Zhao X., Xie L., Yin L. Sustained improvement of gas exchange and lung mechanics by vaporized perfluorocarbon inhalation in piglet acute lung injury model. Clin. Respir. J. 2014; 8 (2): 160 166.
    50. Church JT, Perkins EM, Coughlin MA, McLeod JS, Boss K., Bentley JK, Hershenson MB, Rabah R., Bartlett RH, Mychaliska GB. Perfluorocarbons Prevent Lung Injury and Promote Development during Artificial Placenta Support in Extremely Premature Lambs. Neonatology. 2018; 113 (4): 313 321.
    51. Ding H., Lv Q., Wu S., Hou S., Liu Z., Landén NX, Tian P., Yu M., Sun Z., Fan H. Intratracheal Instillation of Perfluorohexane Modulates the Pulmonary Immune Microenvironment by Attenuating Early Inflammatory Factors in Patients With Smoke Inhalation Injury: A Randomized Controlled Clinical Trial. J Burn Care Res. 2017 Jul/Aug; 38 (4): 251 259.
    52. Zhang Z., Liang Z., Li H., Li C., Yang Z., Li Y., She D., Cao L., Wang W., Liu C., Chen L. Perfluorocarbon reduces cell damage from blast injury by inhibiting signal paths of NF-κB, MAPK and Bcl-2/Bax signaling pathway in A549 cells. PLoS One. 2017 Mar 21; 12 (3): e0173884.
    53. Hu Y., Li CS, Li YQ, Liang Y., Cao L., Chen LA. Perfluorocarbon inhibits lipopolysaccharide-induced macrophage inflammatory protein-2 expression and activation of ATF-2 and c-Jun in A549 pulmonary epithelial cells. Cell Mol Biol (Noisy-le-grand). 2016 Apr 30; 62 (4): 18 24.
    54. Cao L., Li CS, Chang Y., Liang ZX, Chen LA. The effects of perfluorocarbon on ICAM-1 expression in LPS-induced A549 cells and the potential mechanism. Mol Med Rep. 2016 Apr; 13 (4): 3700 8.
    55. Мороз В.В. Пути коррекции гипоксии при критических состояниях: дис. … д-ра мед. наук: 14.00.37. М., 1994. – 121 с.
    56. Мороз В.В., Остапченко Д.А., Власенко А.В., Осипов П.Ю., Герасимов Л.В. Эндотрахеальное применение перфторана в условиях ИВЛ у больных с острым респираторным дистресс-синдромом. // Общая реаниматология. – 2005. – Т. 1. – № 5. – С. 5 11.
    57. Усенко Л.В., Панченко Г.В., Царев А.В., Анищенко А.А. Современные возможности внутрилегочного применения перфторорганических соединений в лечении синдрома острого легочного повреждения. В кн. Перфторуглеродные соединения в медицине и биологии: сборник материалов XIII Межд. конференции, 17–18 июня 2003 г., Пущино. – Пущино, 2004.
    1. Чучалин А.Г. (ред.) Респираторная медицина. Руководство. – Москва: ГЭОТАР-Медиа, 2007. – 1616 с.
    2. Дмитриева Н.В., Петухова И.Н. (ред.) Послеоперационные инфекционные осложнения. Практическое руководство. – Москва: Практическая медицина, 2013. – 422 с.
    3. Гельфанд Б.Р. Нозокомиальная пневмония у взрослых. Российские национальные рекомендации. – М.: МИА, 2016. – 176 с.
    4. Steven J. Palazzo, Terri Simpson, Lynn Schnapp Biomarkers for Ventilator-Associated Pneumonia: Review of the Literature. Heart Lung. 2011; 40 (4): 293–298.
    5. Matthay M. Biomarkers to exclude the diagnosis of ventilator-associated pneumonia. Thorax. 2015; 70 (1): 5 6.
    6. Chastre J., Trouillet J.L., Vuagnat A. Nosocomial pneumonia in patients with acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 1998; 157 (4): 1165 1172
    7. Koulenti D., Lisboa T., Brun-Buisson C. Spectrum of practice in the diagnosis of nosocomial pneumonia in patients requiring mechanical ventilation in European intensive care units. Crit. Care Med. 2009; 37 (8): 2360 2368.
    8. Pugin J., Auckenthaler R., Mili N., Janssens J.P. Diagnosis of ventilator-associated pneumonia by bacteriologic analysis of bronchoscopic and bronbronchoscopic "blind" bronchoalveolar lavage fluid. Am. Rev. Respir. Dis. 1991; 143 (5): 1121 1129.
    9. Ottosen J., Evans H. Pneumonia: challenges in the definition, diagnosis, and management of disease. Surg. Clin. North Am. 2014; 94 (6): 1305 1317.
    10. Chen H., Zhu J. Diagnostic accuracy of clinical pulmonary infection score for ventilator-associated pneumonia: a meta-analysis. Respir. Care. 2011; 56 (8): 1087 1094
    11. Croce M., Swanson J., Magnotti L., Claridge J., Weinberg J., Wood G., Boucher B., Fabian T. The futility of the clinical pulmonary infection score in trauma patients. J. Trauma. 2006; 60 (3): 523–527.
    12. Luyt C., Chastre J., Fagon J. Value of the clinical pulmonary infection score for the identification and management of ventilator-associated pneumonia. Intensive Care Med. 2004; 30 (5): 844–852.
    13. Singh N., Rogers P., Atwood C., Wagener M., Yu V. Short-course empiric antibiotic therapy for patients with pulmonary infiltrates in the intensive care unit. A proposed solution for indiscriminate antibiotic prescription. // Am. J. Respir. Crit. Care Med. 2000; (162): 505 511.
    14. Shan J., Chen H., Zhu J. Diagnostic accuracy of clinical pulmonary infection score for ventilator-associated pneumonia: a meta-analysis. Respir. Care. 2011; 56 (8): 1087 1094.
    15. Torres A., Niederman MS, Chastre J., Ewig S., Fernandez-Vandellos P., Hanberger H., Kollef M., Li Bassi G., Luna CM, Martin-Loeches I., Paiva JA, Read RC, Rigau D., Timsit JF, Welte T., Wunderink R. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquiredpneumonia and ventilator-associated pneumonia: Guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociación Latinoamericana del Tórax (ALAT). Eur Respir J. 2017 Sep 10; 50 (3). pii: 1700582.
    16. Kalil AC, Metersky ML, Klompas M., Muscedere J., Sweeney DA, Palmer LB, Napolitano LM, O'Grady NP, Bartlett JG, Carratalà J., El Solh AA, Ewig S., Fey PD, File TM Jr, Restrepo MI, Roberts JA, Waterer GW, Cruse P, Knight SL, Brozek JL. Management of Adults With Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the AmericanThoracic Society. Clin Infect Dis. 2016 Sep 1; 63 (5): e61-e111.
    17. Кузьков В.В., Киров М.Ю. Инвазивный мониторинг гемодинамики в интенсивной терапии и анестезиологии. // Архангельск: Правда Севера, 2008. – 243 с.
    18. Fagon J., Chastre J., Wolff M., Gervais C., Paer-Aubas S., Stephan F., et al. Invasive and noninvasive strategies for management of suspected ventilator-associated pneumonia. A randomized trial. Ann. Intern. Med. 2000; 132 (8): 621–630.
    19. Canadian Critical Care Trials Group: A randomized trial of diagnostic techniques for ventilator-associated pneumonia. N. Engl. J. Med. 2013; (355): 2619 2630.
    20. Corley D.E., Kitrland S.H., Winterbauer R.H. et al. Reproducibility of the histologic diagnosis of pneumonia among a panel of four pathologist: analysis of a gold standard. Chest. 1997; 112 (2): 458 465.
    21. Dell'anna A., Taccone F. Lung biopsy as diagnostic tool for respiratory failure diagnosis in hematological ICU patients: is it time to adopt it into daily practice? Minerva Anestesiol. 2013; 79 (8): 829 831.

    1. Harrod K.S., Mounday A.D., Stripp B.R., Whitsett J.A. Clara cell secretory protein decreases lung inflammation after acute virus infection. // Am. J. Physiol. Lung Cell Mol. Physiol. 1998; (275): 924–930.
    2. Lakind J.S., Holgate S.T., Ownby D.R., Mansur A.H., Helms P.J., Pyatt D., Hays S.M. A critical review of the use of Clara cell secretory protein (CC16) as a biomarker of acute or chronic pulmonary effects. Biomarkers. 2007; 12 (5): 445 467.
    3. Broeckaert F., Clippe A., Knoops B., Hermans C., Bernard A. Clara cell secretory protein (CC16): features as a peripheral lung biomarker. // Ann. N.-Y. Acad. Sci. 2000; (923): 68 77.
    4. Harrod K.S., Mounday A.D., Stripp B.R., Whitsett J.A. Clara cell secretory protein decreases lung inflammation after acute virus infection. // Am. J. Physiol. Lung Cell Mol. Physiol. 1998; (275): L924–L930.
    5. Lakind J.S., Holgate S.T., Ownby D.R., Mansur A.H., Helms P.J., Pyatt D., Hays S.M. A critical review of the use of Clara cell secretory protein (CC16) as a biomarker of acute or chronic pulmonary effects. Biomarkers. 2007; 12 (5): 445 67.
    6. Vanspauwen M., Bruggeman C., Jacobs J., Drent M., Bergmans D., van Mook W. Clara cell protein in bronchoalveolar lavage fluid: a predictor of ventilator-associated pneumonia? Crit. Care. 2011; (15): R14.
    7. Snyder J., Reynolds S., Hollingsworth J., Li Z., Kaminski N., Stripp B. Clara cells attenuate the inflammatory response through regulation of macrophage behavior. // Am. J. Respir. Cell Mol. Biol. 2010; 42 (2): 161 171.
    8. Elizur A., Adair-Kirk T., Kelley D., Griffin G., deMello D., Senior R. Clara cells impact the pulmonary innate immune response to LPS. // Am. J. Physiol. Lung Cell Mol. Physiol. 2007; 293 (2): L383 92.
    9. Winkelmann A.1, Noack T. The Clara cell: a "Third Reich eponym"? Eur Respir J. 2010 Oct; 36 (4): 722 7.
    10. Clara M. Zur Histobiologie des Bronchalepithels [On the histobiology of the bronchial epithelium.]. Z mikrosk anat Forsch 1937; 41: 321–34
    11. Policard A., Collet A., Giltaire-Ralyte L. Observations microélectroniques sur l'infrastructure des cellules bronchiolaires [Electron microscopic observations on the ultrastructure of bronchiolar cells.]. Les Bronches1955; 5: 187–196.
    12. Singh G., Katyal SL. An immunologic study of the secretory products of rat Clara cells. J Histochem Cytochem 1984; 32: 49–54.
    13. Woywodt A., Lefrak S., Matteson E. Tainted eponyms in medicine: the "Clara" cell joins the list. Eur Respir J. 2010 Oct; 36 (4): 706 8.
    14. Kurowski M., Jurczyk J., Jarzębska M., Moskwa S., Makowska S., Krysztofiak H.H., Kowalski M. Association of serum Clara cell protein CC16 with respiratory infections and immune response to respiratory pathogens in elite athletes. Respir. Res. 2014; 15 (1): 45.
    15. Determann R., Millo J., Waddy S., Lutter R., Garrard C., Schultz M. Plasma CC16 levels are associated with development of ALI/ARDS in patients with ventilator-associated pneumonia: a retrospective observational study. BMC Pulmonary Medicine. 2009 (9): 49.
    16. Lock-Johansson S., Vestbo J., Sorensen GL. Surfactant protein D, Club cell protein 16, Pulmonary and activation-regulated chemokine, C-reactive protein, and Fibrinogen biomarker variation in chronic obstructive lung disease.
    17. Hin A., Kannengiesser C., Roussel A., Renaud-Picard B., Roux A., Reynaud-Gaubert M., Claustre J., Tissot A., Guillemain R., Mornex JF, Mussot S., Dromer C., Dahan M., Brugière O., Mercier O., Borie R., Pretolani M., Castier Y., Mordant P.; COLT Consortium Donor Club Cell Secretory Protein G38A Polymorphism is Associated with a Decreased Risk of Primary Graft Dysfunction in the French Cohort in Lung Transplantation (COLT). Transplantation. 2018 Feb 20.
    18. Geerts L., Jorens P., Willems J., De Ley M., Slegers H. Natural inhibitors of neutrophil function in acute respiratory distress syndrome. Crit. Care Med. 2001 (29): 1920–1924.
    19. Lesur O., Langevin S., Berthiaume Y. Outcome value of Clara cell protein in serum of patients with acute respiratory distress syndrome. Intensive Care Med. 2006 (32): 1167–1174.
    20. Determann R., Wolthuis E., Choi G., Bresser P., Bernard A., Lutter R., Schultz M.J. Lung epithelial injury markers are not influenced by Use of Lower Tidal Volumes during Elective Surgery in Patients without Pre-existing Lung Injury. // Am. J Physiol Lung Cell Mol Physiol. 2008; (294): L344–350.
    21. Lin J., Zhang W., Wang L., Tian F. Diagnostic and prognostic values of Club cell protein 16 (CC16) in critical care patients with acute respiratory distress syndrome. J Clin Lab Anal. 2018; 32 (2):
    22. Negrin LL, Halat G., Kettner S., Gregori M., Ristl R., Hajdu S., Heinz T. Club cell protein 16 and cytokeratin fragment 21 1 as early predictors of pulmonary complications in polytraumatized patients with severe chest trauma. PLoS One. 2017 Apr 5; 12 (4): e0175303.
    23. Lu Q., Eggimann P., Luyt C., Wolff M., Tamm M., François B., Mercier E., Garbino J., Laterre P., Koch H., Gafner V., Rudolf M., Mus E., Perez A., Lazar H., Chastre J., Rouby J. Pseudomonas aeruginosa serotypes in nosocomial pneumonia: prevalence and clinical outcomes. Crit Care. 2014; 18 (1): R17.
    24. Гельфанд Б.Р. Нозокомиальная пневмония у взрослых. Российские национальные рекомендации. – М.: МИА, 2016 – 176 с.
    25. Harrod K., Mounday A., Whitsett J. Adenoviral E3–14.7K protein in LPS-induced lung inflammation. // Am. J. Physiol. Lung Cell Mol. Physiol. 2000 (278): L631–L639.
    26. Hayashida S., Harrod KS, Whitsett JA. Regulation and function of CCSP during pulmonary Pseudomonas aeruginosa infection in vivo. Am J Physiol Lung Cell Mol Physiol. 2000
    27. Hantson P., Bernard A., Hermans C. Kinetics and determinants of the changes of CC16, a lung secretory protein in a rat model of toxic lung injury. Clin. Toxicol (Phila). 2008 (46): 230–238.
    28. Harrod K.S., Jaramillo R.J. Pseudomonas aeruginosa and tumor necrosis factor-alpha attenuate Clara cell secretory protein promoter function. // Am. J. Respir. Cell Mol. Biol. 2002; 26 (2): 216 223.
    29. Чучалин А.Г. (ред.) Респираторная медицина. Руководство. – Москва: ГЭОТАР-Медиа, 2007. – 1616 с.
    30. Martin TR, Frevert CW. Innate immunity in the lungs. Proc Am Thorac Soc. 2005; 2 (5): 403 11
    31. O'Dwyer DN, Gurczynski SJ, Moore BB. Pulmonary immunity and extracellular matrix interactions. Matrix Biol. 2018 Apr 9
    32. Hartl D., Tirouvanziam R., Laval J., Greene CM, Habiel D., Sharma L., Yildirim AÖ, Dela Cruz CS, Hogaboam CM. Innate Immunity of the Lung: From Basic Mechanisms to Translational Medicine. J Innate Immun. 2018 Feb 13.
    33. Mizgerd JP. Respiratory infection and the impact of pulmonary immunity on lung health and disease. Am J Respir Crit Care Med. 2012 Nov 1;186 (9): 824 9
    34. Sorensen GL. Surfactant Protein D in Respiratory and Non-Respiratory Diseases. Front Med (Lausanne). 2018 Feb 8; 5:18.
    35. Ware L., Koyama T., Billheimer D., Wu W., Bernard G., Thompson B., Brower R., Standiford T., Martin T., Matthay M. Prognostic and pathogenetic value of combining clinical and biochemical indices in patients with acute lung injury. Chest. 2010; 137 (2): 288 296.
    36. Galsser J., Mallampalli R. Surfactants and its role in the pathology of pulmonary infection. Microbes Infect. 2012; 14 (1): 17 25.
    37. Matthay M. Biomarkers to exclude the diagnosis of ventilator-associated pneumonia. Thorax. 2015; 70 (1): 5 6.
    38. Ashbaugh D.G., Bigelow D.B., Petty T.L. et al. Acute respiratoty distress in adults. Lancet. 1967 (2): 319 323.
    39. Bernard G.R., Artigas A., Brigham A.M. et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am. J. Respir. Crit. Care Med. 1994; 49 (3): 818 824.
    40. Мороз В.В., Чурляев Ю.А. Вторичные повреждения головного мозга при тяжелой черепно-мозговой травме. – Москва: НИИОР, 2006. – 403 с.
    41. Кузьков В.В., Суборов Е.В., Куклин В.Н. Динамика внесосудистой воды легких после пневмонэктомии по данным транспульмональной термодилюции. // Общая реаниматология. – 2006. – Т. 2. – № 4. – С. 34 41.
    42. Patroniti N., Bellani G., Maggioni E. et al. Measurement of pulmonary edema in patients with acute respiratory distress syndrome. Crit. Care Med. 2005; (33): 2547 2554.
    43. Bratcher P., Gaggar A. Factors Influencing the Measurement of Plasma/Serum Surfactant Protein D Levels by ELISA. PLoS One. 2014; 9 (11): e111466.
    44. Wu H., Kuzmenko A., Wan S., Schaffer L., Weiss A. Surfactant proteins A and D inhibit the growth of Gram-negative bacteria by increasing membrane permeability. J. Clin Invest. 2003; (111): 1589–1602
    45. Kongchanagul A., Suptawiwat O., Boonarkart C., Kitphati R., Puthavathana P., Uiprasertkul M., Auewarakul P. Decreased expression of surfactant protein D mRNA in human lungs in fatal cases of H5N1 avian influenza. J Med Virol. 2011; 83 (8): 1410 1417.
    46. Delgado C., Krötzsch E., Jiménez-Alvarez L., Ramírez-Martínez G., Márquez-García J., Cruz-Lagunas A., Morán J., Hernández C., Sierra-Vargas P., Avila-Moreno F., Becerril C., Montaño M., Bañales-Méndez J., Zúñiga J., Buendía-Roldán I. Serum Surfactant Protein D (SP-D) is a Prognostic Marker of Poor Outcome in Patients with A/H1N1 Virus Infection. Lung. 2015; 193 (1): 25 30.
    47. King B., Kingma P. Surfactant Protein D Deficiency Increases Lung Injury during Endotoxemia. // Am. J. Respir. Cell Mol Biol. 2011; 44 (5): 709–715.
    48. Said A., Abd-Elaziz M., Farid M., Abd-ElFattah M., Abdel-Monim M., Doctor A. Evolution of surfactant protein-D levels in children with ventilator-associated pneumonia. Pediatr Pulmonol. 2012; 47 (3): 292 9.
    49. Tekerek NU, Akyildiz BN, Ercal BD, Muhtaroglu S. New Biomarkers to Diagnose Ventilator Associated Pneumonia: Pentraxin 3 and Surfactant Protein D. Indian J Pediatr. 2018 Jun; 85 (6): 426 432.
    50. Park J., Pabon M., Choi AMK, Siempos II, Fredenburgh LE, Baron RM, Jeon K., Chung CR, Yang JH, Park CM, Suh GY. Plasma surfactant protein-D as a diagnostic biomarker for acute respiratory distress syndrome: validation in US and Korean cohorts. BMC Pulm Med. 2017 Dec 15; 17 (1): 204.
    51. Calfee CS, Janz DR, Bernard GR, May AK, Kangelaris KN, Matthay MA, Ware LB. Distinct molecular phenotypes of direct vs indirect ARDS in single-center and multicenter studies. Chest. 2015; 147: 1539–1548.
    52. Eisner M., Parsons P., Matthay M., Ware L., Greene K. Plasma surfactant protein levels and clinical outcomes in patients with acute lung injury. Thorax. 2003; 58 (11): 983 988.
    53. Determann R., Royakkers A., Haitsma J., Zhang H., Slutsly A., Ranieri V., Schultz M Plasma levels of surfactant protein D and KL-6 for evaluation of lung injury in critically ill mechanically ventilated patients. BMC Pulm. Med. 2010; 10 (6): 6 15.
    54. Winkler C., Atochina-Vasserman E., Holz O., Beers M., Erpenbeck V., Krug N. Comprehensive characterisation of pulmonary and serum surfactant protein D in COPD. Respir. Res. 2011; (12): 29.
    55. Canadas O., Garcia-Verdugo I., Keough K., Casals C. Sp-a permeabilizes lipopolysaccharide membranes by forming protein aggregates that extract lipids from the membrane. Biophys. 2008; (95): 3287–3294.
    56. Keese S., Brandenburg K., Roessle M., Schromm A. Pulmonary surfactant protein A-induced changes in the molecular conformation of bacterial deep-rough LPS lead to reduced activity on human macrophages. Innate Immun. 2014; 20 (8): 787 798.
    57. Giannoni E., Sawa T., Allen L., Wiener-Kronish J., Hawgood S. Surfactant proteins A and D enhance pulmonary clearance of Pseudomonas aeruginosa. Am. J. Respir. Cell Mol. Biol. 2006; (34): 704–710.
    58. Sever-Chroneos Z., Krupa A., Davis J., Hasan M., Yang CH, Szeliga J., Herrmann M., Hussain M., Geisbrecht BV, Kobzik L., Chroneos ZC. Surfactant protein a (sp-a)-mediated clearance of staphylococcus aureus involves binding of sp-a to the staphylococcal adhesin eap and the macrophage receptors sp-a receptor 210 and scavenger receptor class a. // J. Biol. Chem. 2011; (286): 4854–4870.
    59. Wright J. Immunoregulatory functions of surfactant proteins. Nat Rev Immunol. 2005; (5): 58–68.
    60. Gao Y., Wang Z., Wang J., Cai G., Zhu Z., Chen G. Pseudomonas aeruginosa elastase inhibits immune phagocytosis mediated by pulmonarysurfactant protein A Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2014; 30 (12): 1251 1254.
    61. Giannoni E., Sawa T., Allen L., Wiener-Kronish J., Hawgood S. Surfactant proteins A and D enhance pulmonary clearance of Pseudomonas aeruginosa. Am. J. Respir. Cell Mol Biol. 2006; (34): 704–710.
    62. Borron P., McIntosh J., Korfhagen J., Whitsett J., Taylor J., Wright J. Surfactant-associated protein A inhibits LPS-induced cytokine and nitric oxide production in vivo. // Am. J. Physiol. 2000; (278): L840–L847.
    63. LeVine A., Whitsett J., Gwozdz J., Richardson T., Fisher J., Burhans M., Korfhagen T. Distinct effects of surfactant protein A or D deficiency during bacterial infection on the lung. J. Immunol. 2000; 165 (7): 3934 3940.
    64. Kannan T., Provenzano D., Wright J., Baseman J. Identification and characterization of human surfactant protein A binding protein of Mycoplasma pneumoniae. Infect. Immun. 2005; (73): 2828 2834.
    65. Shu L., Shang Y., Cai X., Zong Z., Meng X., Zhang H., Wang Z., Dai B. Alterations of SP-A, SP-D and KL-6 in serum and bronchoalveolar lavage fluid in children with Mycoplasma pneumoniae pneumonia. Zhonghua Er Ke Za Zhi. 2013; 51 (10): 779 782.
    66. Greene K., Wright J., Steinberg K., Ruzinski J., Caldwell E., Wong W., Hull W., Whitsett J., Akino T., Kuroki Y. Serial changes in surfactant-associated proteins in lung and serum before and after onset of ARDS. Am. J. Respir. Crit. Care Med. 1999; (160): 1843–1850.
    67. Zhu B., Zheng F., Liu N., Zhu M., Xie J. Ye J., Zhang J. Jiang D. Yang C., Jiang Y. Diagnostic value of surfactant protein a in severe acute pancreatitis-induced acute respiratory distresssyndrome. Med. Sci Monit. 2014: (20): 1728 1734.
    68. Galsser J., Mallampalli R. Surfactants and its role in the pathology of pulmonary infection. Micribes Infect. 2012; 14 (1): 17 25.
    69. Wu T.T., Chen T.L., Loon W.S., Tai Y.T., Cherng Y.G., Chen R.M. Lipopolysaccharide stimulates syntheses of toll-like receptor 2 and surfactant protein-A in human alveolar epithelial A549 cells through upregulating phosphorylation of MEK1 and ERK1/2 and sequential activation of NF-κB. Cytokine. 2011; 55 (1): 40 47.
    70. Truscott E., McCaig L., Yao L., Veldhuizen R., Lewis J. Surfactant protein-A reduces translocation of mediators from the lung into the circulation. Exp. Lung Res. 2010; 36 (7): 431 439.
    71. Cross L., Matthay M. Biomarkers of acute lung injury: insights into the pathogenesis pf acute lung injury. Crit. Care Clin. 2011; 27 (2): 355 377.
    72. Goto H., Ledford J.G., Mukherjee S., Noble P.W., Williams K.L., Wright J.R. The role of surfactant protein A in bleomycin-induced acute lung injury. Am. J. Resp. Crit. Care Med. 2010; 181 (12): 1336 44.
    73. Mukherjee S., Giamberardino C., Thomas J., Evans K., Goto H., Ledford J.G., Hsia B., Pastva A.M.,Wright J.R. Surfactant protein A integrates activation signal strength to differentially modulate T cell proliferation. J. Immunol. 2012; 188 (3): 957 67.
    74. Henning L.N., Azad A.K., Parsa K.V., Crowther J.E., Tridandapani S., Schlesinger L.S. Pulmonary surfactant protein A regulates TLR expression and activity in human macrophages. J. Immunol. 2008; 180 (12): 7847 7858.
    75. Cheng I., Ware L., Greene K., Nuckton T., Eisner M., Matthay M. Prognostic value of surfactant proteins A and D in patients with acute lung injury. Crit. Care Med. 2003; 31 (1): 20 27.
    76. Terpstra M., Aman J., van Nieuw Amerongen G., Groeneveld A. Plasma biomarkers for acute respiratory distress syndrome: a systematic review and meta-analysis. Crit. Care Med. 2014; 42 93): 691 700.
    77. Sapru A., Calfee C., Liu K., Kangelaris K., Hansen H., Pawlikowska L., Ware L., Alkhouli M., Abbot J., Matthay M.; NHLBI ARDS Network. Plasma soluble thrombomodulin levels are associated with mortality in the acute respiratory distress syndrome. Intensive Care Med. 2015; 41 (3): 470 478.
    78. Kor D., Lingineni R., Gajic O. Park P., Blum J., Hou P., Hoth J., Anderson H., Bajwa E., Bartz R., Adesanya A., Festic E., Gong M., Carter R., Talmor D. Predicting risk of postoperative lung injury in high-risk surgical patients: a multicenter cohort study. Anesthesiology. 2014; 120 (5): 1168 1181.
    1. Imberti R., Cusato M., Villani P., Carnevale L., Iotti G., Langer M., Regazzi M. Steady-state pharmacokinetics and BAL concentration of colistin in critically ill patients after IV colistin methanesulfonate administration. Chest. 2010; 138: 1333–9.
    2. Smith B., Yogaratnam D., Levasseur-Franklin K., Forni A., Fong J. Introduction to drug pharmacokinetics in the critically ill patient. Chest. 2012; 141: 1327–36.
    3. Kollef MH, Chastre J., Clavel M et al. A randomized trial of 7-day doripenem versus 10-day imipenem-cilastatin for ventilator- associated pneumonia. Crit Care. 2012; 16 (6): R218.
    4. Dulhunty JM, Roberts JA, Davis JS et al. A multicenter randomized trial of continuous versus intermittent beta-lactam infusion in severe sepsis. Am J Respir Crit Care Med. 2015; 192 (11): 1298 1305.
    5. Tamma PD, Putcha N., Suh YD et al. Does prolonged beta-lactam infusions improve clinical outcomes compared to intermittent infusions? A meta-analysis and systematic review of randomized, controlled trials. BMC Infect Dis. 2011; 11:181.
    6. Marcus R., Paul M., Elphick H. et al. Clinical implications of beta-lactam-aminoglycoside synergism: systematic review of randomized trials. Int J Antimicrob Agents. 2011; 37 (6): 491 503.
    7. Chastre J., Wolff M., Fagon JY et al. Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA. 2003; 290 (19): 2588 2598.
    8. Wunderink RG POINT: Should Inhaled Antibiotic Therapy Be Used Routinely for the Treatment of Bacterial Lower Respiratory Tract Infections in the ICU Setting? Chest. 2017 Apr; 151 (4): 737 739.
    9. Högberg LD, Heddini A., Cars O. The global need for effective antibiotics: challenges and recent advances. Trends Pharmacol Sci. 2010 Nov; 31 (11): 509 15.
    10. Ehrmann S., Roche-Campo F., Sferrazza Papa GF, Isabey D., Brochard L., Apiou-Sbirlea G.; REVA research network. Aerosol therapy during mechanical ventilation: an international survey. Intensive Care Med. 2013; 39 (6): 1048 1056.
    11. Alves J., Alp E., Koulenti D. et al. Nebulization of antimicrobial agents in mechanically ventilated adults in 2017: an international cross-sectional survey. Eur J Clin Microbiol Infect Dis. 2018 Jan 9.
    12. Niederman MS, Chastre J., Corkery K. et al. BAY41–6551 achieves bactericidal tracheal aspirate amikacin concentrations in mechanically ventilated patients with gram-negative pneumonia. Intensive Care Med. 2012; 38 (2): 263–271.
    13. Le J., Ashley E.D., Neuhauser M.M. et al. Consensus summary of aerosolized antimicrobial agents: application of guideline criteria. Insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy 2010; 30 (6): 562 584.
    14. Weers J. Inhaled antimicrobial therapy – barriers to effective treatment. Adv. Drug Deliv. Rev. 2015, 85, 24–43.
    15. Lu Q., Yang J., Liu Z. et al. Nebulized Antibiotics Study Group. Nebulized ceftazidime and amikacin in ventilator-associated pneumonia caused by Pseudomonas aeruginosa. Am. J. Respir. Crit. Care Med. 2011; 184 (1): 106 115.
    16. Ferrari F., Lu Q., Girardi C., Petitjean O. et al. Nebulized ceftazidime in experimental pneumonia caused by partially resistant Pseudomonas aeruginosa. Intensive Care Med. 2009; 35: 1792–800.
    17. Lu Q., Girardi C., Zhang M. et al. Nebulized and intravenous colistin in experimental pneumonia caused by Pseudomonas aeruginosa. Intensive Care Med. 2010; 36: 1147–55.
    18. Rello J., Solé-Lleonart C., Rouby J. et al. Use of Nebulized Antimicrobials for the Treatment of Respiratory Infections in Invasively Mechanically Ventilated Adults: A Position Paper from the European Society of Clinical Microbiology and Infectious Diseases. Clin Microbiol Infect. 2017; S1198 743X (17) 30219-7.
    19. Kalil A., Metersky M., Klompas M. et al. Management of Adults With Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis. 2016; 63 (5): 575 82.
    20. Гельфанд Б.Р. Нозокомиальная пневмония у взрослых. Российские национальные рекомендации. – М.: МИА, 2016: 176 с.
    21. Амелина Е.Л., Чучалин А.Г. Ингаляционный тобрамицин в лечении синегнойной инфекции у больных муковисцидозом. Пульмонология. – 2009. – № 5. – С. 120–126.
    22. Белоусов Ю.Б., Зырянов С.К., Соколов А.В. Эффективность и безопасность раствора тобрамицина для ингаляций в лечении синегнойной инфекции при муковисцидозе. Пульмонология. – 2010. – № 2. – С. 114–119.
    23. Капранов Н.И., Каширская Н.Ю., Родионович А.М., Амелина Е.Л., Чучалин А.Г., Гембицкая Т.Е., Черменский А.Г., Орлов А.В., Varoli G., Monici Preti P. Клиническое значение специальной аэрозольной формы тобрамицина в лечении хронического бронхолегочного процесса у больных муковисцидозом. Пульмонология. – 2008. – № 3. – С. 20–26.
    24. Smith S., Rowbotham NJ, Regan KH. Inhaled anti-pseudomonal antibiotics for long-term therapy in cystic fibrosis. Cochrane Database Syst Rev. 2018 Mar 30; 3: CD001021.
    25. Dhand R. The role of aerosolized antimicrobials in the treatment of ventilator-associated pneumonia. Respir Care. 2007; 52: 866–84.
    26. Riethmüller J., Herrmann G., Graepler-Mainka U., Hellwig D., Heuer H., Heyder S., Köster H., Kinder B., Kröger K., Paul K., Poplawska K., Melichar V., Smaczny C., Mellies U. Sequential Inhalational Tobramycin-Colistin-Combination in CF-Patients with Chronic P. Aeruginosa Colonization – an Observational Study Cell Physiol Biochem. 2016; 39 (3): 1141 51.
    27. Aksamit T., Bandel TJ, Criollo M., De Soyza A., Elborn JS, Operschall E., Polverino E., Roth K., Winthrop KL, Wilson R. The RESPIRE trials: Two phase III, randomized, multicentre, placebo-controlled trials of Ciprofloxacin Dry Powder for Inhalation (Ciprofloxacin DPI) in non-cystic fibrosis bronchiectasis. Contemp Clin Trials. 2017; 58: 78 85.
    28. Ioannidou E., Siempos I., Falagas M. Administration of antimicrobials via the respiratory tract for the treatment of patients with nosocomial pneumonia: a meta-analysis. J. Antimicrob. Chemother. 2007; 60 (6): 1216–1226.
    29. Hudson R., Olson B. Inhaled antibiotics for Gram-negative respiratory infections. Future Med Chem. 2011; 3 (13): 1663–1677.
    30. Czosnowski Q.A., Wood G.C., Magnotti L.J., Croce M.A., Swanson J.M., Boucher B.A., Fabian T.C. Adjunctive aerosolized antibiotics for treatment of ventilator-associated pneumonia. Pharmacotherapy. 2009 Sep; 29 (9): 1054–1060.
    31. Arnold H., Sawyer A., Kollef M. Use of Adjunctive aerosolized antimicrobial therapy in the treatment of Pseudomonas aeruginosa and Acinetobacter baumannii ventilator-associated pneumonia. Respir. Care. 2012; 57 (8): 1226–1233.
    32. Niederman MS, Chastre J., Corkery K., Fink JB, Luyt CE, García MS Bay41 6551 achieves bactericidal tracheal aspirate amikacin concentrations in mechanically ventilated patients with Gram-negative pneumonia. Intensive Care Med 2012; 38: 263–271.
    33. Le Conte P., Potel G., Clementi E., Legras A., Villers D., Bironneau E., Cousson J., Baron D. Administration of tobramycin aerosols in patients with nosocomial pneumonia: A preliminary study. Presse Med 2000; 29: 76–78.
    34. Lu Q., Yang J., Liu Z., Gutierrez C., Aymard G., Rouby J.J.; Nebulized Antibiotics Study Group. Nebulized ceftazidime and amikacin in ventilator-associated pneumonia caused by Pseudomonas aeruginosa. Am. J. Respir. Crit. Care Med. 2011; 184 (1): 106 115.
    35. Lu Q., Luo R., Bodin L., Yang J., Zahr N., Aubry A., Golmard J.L., Rouby J.J.; Nebulized Antibiotics Study Group. Efficacy of high-dose nebulized colistin in ventilator-associated pneumoniaт caused by multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Anesthesiology 2012; 117: 1335–1347.
    36. Ghannam D.E., Rodriguez G.H., Raad I.I., Safdar A. Inhaled aminoglycosides in cancer patients with ventilator-associated Gram-negative bacterial pneumonia: safety and feasibility in the era of escalating drug resistance. Eur. J. Clin. Microbiol. Infect Dis. 2009; 28 (3): 253 259.
    37. А.Н. Кузовлев, В.В. Мороз, А.М. Голубев, С.Г. Половников Ингаляционный тобрамицин в лечении ИВЛ-ассоциированной пневмонии. Клиническая фармакология и терапия 2014; 23 (4): 52 58.
    38. Boisson M., Mimoz O., Hadzic M., Marchand S., Adier C., Couet W., Grégoire N. Pharmacokinetics of intravenous and nebulized gentamicin in critically ill patients. Pharmacokinetics of intravenous and nebulized gentamicin in critically ill patients. J Antimicrob Chemother. 2018 Jun 26.
    39. Hassan NA, Awdallah FF, Abbassi MM, Sabry NA. Nebulized Versus IV Amikacin as Adjunctive Antibiotic for Hospital and Ventilator-Acquired Pneumonia Postcardiac Surgeries: A Randomized Controlled Trial. Crit Care Med. 2018 Jan; 46 (1): 45 52.
    40. Ярошецкий А.И., Резепов Н.А., Мандель И.А., Колоярцева Н.В., Васильева С.О., Непогодин В.С., Валуева Е.А., Ходак В.А., Конаныхин В.Д. Влияние ингаляции амикацина на эффективность лечения вентилятор-ассоциированной пневмонии и вентилятор-ассоциированного трахеобронхита, вызванных полирезистентной грамотрицательной флорой. Сравнительное исследование. Анестезиология и реаниматология, 2018; 63 (1): 61 68.
    41. Gurjar M. Colistin for lung infection: an update. Journal of Intensive Care, 2015; 3 (1): 3.
    42. Doshi N., Cook C., Mount K., Stawicki S., Frazee E., Personett H. et al. Adjunctive aerosolized colistin for multi-drug resistant gram-negative pneumonia in the critically ill: a retrospective study. BMC Anesthesiol. 2013; 13 (1): 45.
    43. Tumbarello M., De Pascale G., Trecarichi E., De Martino S., Bello G., Maviglia R. Et al. Effect of aerosolized colistin as adjunctive treatment on the outcomes of microbiologically documented ventilator-associated pneumonia caused by colistin-only susceptible gram-negative bacteria. Chest. 2013; 144 (6): 1768 75.
    44. Korbila I., Michalopoulos A., Rafailidis P.I., Nikita D., Samonis G., Falagas M.E. Inhaled colistin as adjunctive therapy to intravenous colistin for the treatment of microbiologically documented ventilator-associated pneumonia: a comparative cohort study. Clin. Microbiol. Infect. 2010; 16 (8): 1230–1236.
    45. Liu D., Zhang J., Liu H., Zhu Y., Qu J. Intravenous combined with aerosolised polymyxin versus intravenous polymyxin alone in the treatment of pneumonia caused by multidrug-resistant pathogens: a systematic review and meta-analysis. Int J Antimicrob Agents. 2015; 46 (6): 603–609. doi: 10.1016/j.ijantimicag.2015.09.011.
    46. Rattanaumpawan P., Lorsutthitham J., Ungprasert P., Angkasekwinai N., Thamlikitkul V. Randomized controlled trial of nebulized colistimethate sodium as adjunctive therapy of ventilator-associated pneumonia caused by Gram-negative bacteria. J Antimicrob Chemother. 2010; 65 (12): 2645–2649.
    47. Valachis A., Samonis G., Kofteridis D. The role of aerosolized colistin in the treatment of ventilator-associated pneumonia: a systematic review and metaanalysis. Crit Care Med. 2015; 43 (3): 527 533.
    48. Florescu D., Qiu F., McCartan M., Mindru C., Fey P., Kalil A. What is the efficacy and safety of colistin for the treatment of ventilator-associated pneumonia? A systematic review and meta-regression. Clin Infect Dis. 2012; 54: 670–680.
    49. Kofteridis D., Alexopoulou C., Valachis A., Maraki S., Dimopoulou D., Georgopoulos D., Samonis G. Aerosolized plus intravenous colistin versus intravenous colistin alone for the treatment of ventilator-associated pneumonia: a matched case-control study. Clin Infect Dis. 2010; 51 (11): 1238–1244.
    50. Demirdal T., Sari U., Nemli S. Is inhaled colistin beneficial in ventilator associated pneumonia or nosocomial pneumonia caused by Acinetobacter baumannii? Ann Clin Microbiol Antimicrob. 2016; 15: 11.
    51. Abdellatif S., Trifi A., Daly F., Mahjoub K., Nasri R., Ben Lakhal S. Efficacy and toxicity of aerosolised colistin in ventilator-associated pneumonia: a prospective, randomised trial. Ann Intensive Care. 2016 Dec; 6 (1): 26.
    52. Vardakas KZ, Mavroudis AD, Georgiou M., Falagas ME. Intravenous plus inhaled versus intravenous colistin monotherapy for lower respiratory tract infections: A systematic review and meta-analysis. J Infect. 2018 Apr; 76 (4): 321–327.
    53. Le J., Ashley E.D., Neuhauser M.M., Brown J., Gentry C., Klepser M.E., Marr A.M., Schiller D., Schwiesow J.N., Tice S., VandenBussche H.L., Wood G.C. Society of Infectious Diseases Pharmacists Aerosolized Antimicrobials Task Force. Consensus summary of aerosolized antimicrobial agents: application of guideline criteria. Insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy. 2010; 30 (6): 562 584.
    54. Migiyama Y., Hirosako S., Tokunaga K., Migiyama E., Tashiro T., Sagishima K., Kamohara H., Kinoshita Y., Kohrogi H. Aerosolized tobramycin for Pseudomonas aeruginosa ventilator-associated pneumonia in patients with acute respiratory distress syndrome. Pulm Pharmacol Ther. 2017 Apr 24.
    55. Кузовлев А.Н., Шабанов А.К., Голубев А.М., Мороз В.В. Оценка эффективности ингаляционного колистина при нозокомиальной пневмонии. Общая реаниматология. 2017;13(6):60 73.
    56. Falagas ME, Trigkidis KK, Vardakas KZ Inhaled antibiotics beyond aminoglycosides, polymyxins and aztreonam: A systematic review. Int J Antimicrob Agents. 2015 Mar; 45 (3): 221 33.
    57. Montgomery A., Rhomberg P., Abuan T., Walters K., Flamm R. Amikacin/fosfomycin at a five-to-two ratio: characterization of mutation rates in microbial strains causing ventilator-associated pneumonia and interactions with commonly used antibiotics. Antimicrob Agents Chemother. 2014; 58: 3707–13.
    58. Montgomery A., Rhomberg P., Abuan T., Walters K., Flamm R. Potentiation effects of amikacin and fosfomycin against selected amikacin-nonsusceptible Gram-negative respiratory tract pathogens. Antimicrob Agents Chemother. 2014; 58: 3714–9.
    59. Montgomery A., Vallance S., Abuan T., Tservistas M., Davies A. A randomized double-blind placebo-controlled dose-escalation Phase 1 study of aerosolized amikacin and fosfomycin delivered via the PARI Investigational eFlow® Inline Nebulizer System in mechanically ventilated patients. J Aerosol Med Pulm Drug Deliv. 2014; 27: 441–8.
    60. Hallal A., Cohn S., Namias N., Habib F., Baracco G., Manning R., Crookes B., Schulman C. Aerosolized tobramycin in the treatment of ventilator associated pneumonia: a pilot study. Surg Infect (Larchmt). 2007; 8: 73–81.
    61. Kollef MH, Ricard JD, Roux D., Francois B., Ischaki E., Rozgonyi Z., Boulain T., Ivanyi Z., János G., Garot D., Koura F., Zakynthinos E., Dimopoulos G., Torres A., Danker W., Montgomery AB. A Randomized Trial of the Amikacin Fosfomycin Inhalation System for the Adjunctive Therapy of Gram-Negative Ventilator-Associated Pneumonia: IASIS Trial. Chest. 2017 Jun; 151 (6): 1239 1246.
    62. Kadrichu N., Corkery K., Dang T., Challoner P. Performance of amikacin inhale: impact of supplemental oxygen and device orientation. Crit Care. 2015; 19(Suppl 1): P120.
    63. Bassetti M., Luyt CE, Nicolau DP, Pugin J. Characteristics of an ideal nebulized antibiotic for the treatment of pneumonia in the intubated patient. Characteristics of an ideal nebulized antibiotic for the treatment of pneumonia in the intubated patient. Ann Intensive Care. 2016 Dec; 6 (1): 35.
    64. Susan E., Coffin MM, Klompas M. et al. Strategies to prevent ventilator‐associated pneumonia in acute care hospitals. Infection Control and Hospital Epidemiology. 2008; 29: S31–40.
    65. Кузовлев А.Н., Гречко А.В. Ингаляционные антибиотики в реаниматологии: состояние, проблемы и перспективы развития. Общая реаниматология. 2017, 13 (5): 69–85.
    66. Karvouniaris M., Makris D., Manoulakas E., Zygoulis P., Mantzarlis K., Triantaris A., Chatzi M., Zakynthinos E. Ventilator-associated tracheobronchitis increases the length of intensive care unit stay. Infect Control Hosp Epidemiol. 2013 Aug; 34 (8): 800 8.
    67. Martin-Loeches I., Povoa P., Rodríguez A., Curcio D., Suarez D., Mira JP, Cordero ML, Lepecq R., Girault C., Candeias C., Seguin P., Paulino C., Messika J., Castro AG, Valles J., Coelho L., Rabello L., Lisboa T., Collins D., Torres A., Salluh J., Nseir S.TAVeM study. Incidence and prognosis of ventilator-associated tracheobronchitis (TAVeM): a multicentre, prospective, observational study. Lancet Respir Med. 2015 Nov; 3 (11): 859 68.
    68. Craven DE, Lei Y., Ruthazer R. et al. Incidence and outcomes of ventilator-associated tracheobronchitis and pneumonia. Am J Med 2013; 126: 542–549.
    69. Nseir S., Deplanque X., Di Pompeo C. et al. A Risk factors for relapse of ventilator-associated pneumonia related to nonfermenting Gram negative bacilli: a case-control study. J Infect. 2008; 56: 319–325.
    70. Luna CM, Aruj P., Niederman MS et al. Appropriateness and delay to initiate therapy in ventilator-associated pneumonia. Eur Respir J 2006, 27: 158–164.
    71. Palmer LB, Smaldone GC, Chen JJ et al. Aerosolized antibiotics and ventilator-associated tracheobronchitis in the intensive care unit. Crit Care Med 2008, 36: 2008–2013.
    72. Nseir S., Favory R., Jozefowicz E. et al. Antimicrobial treatment for ventilator-associated tracheobronchitis: a randomized, controlled, multicenter study. Crit Care 2008, 12: R62.
    73. Claridge JA, Edwards NM, Swanson J. et al. Aerosolized ceftazidime prophylaxis against ventilator-associated pneumonia in high-risk trauma patients: results of a double-blind randomized study. Surg Infect (Larchmt). 2007 Feb; 8 (1): 83–90.
    74. Karvouniaris M., Makris D., Zygoulis P. et al. Nebulized colistin for ventilator-associated pneumonia prevention. Eur Respir J. 2015; 46 (6): 1732 1739.
    75. Russell CJ, Shiroishi MS, Siantz E. et al. The use of inhaled antibiotic therapy in the treatment of ventilator-associated pneumonia and tracheobronchitis: a systematic review. BMC Pulm Med. 2016; 8; 16:40.
    76. Póvoa FCC, Cardinal-Fernandez P., Maia IS et al. Effect of antibiotics administered via the respiratory tract in the prevention of ventilator-associated pneumonia: A systematic review and meta-analysis. J Crit Care. 2018; 43: 240 245.
    1. Мороз В.В., Голубев А.М., Марченков Ю.В., Власенко А.В., Карпун Н.А., Яковлев В.Н., Алексеев В.Г., Бобринская И.Г., Решетняк В.И., Кузовлев А.Н., Смелая Т.В. Острый респираторный дистресс-синдром: классификация, диагностика, дифференцированное лечение. – Москва: НИИОР, 2013. – С. 84.
    2. Мороз В.В., Голубев А.М., Марченков Ю.В., Власенко А.В., Кузовлев А.Н. Диагностика острого респираторного дистресс-синдрома при нозокомиальной пневмонии. – Москва: НИИОР, 2011. – С. 25.
    3. Мороз В.В., Голубев А.М. Классификация острого респираторного дистресс-синдрома. // Общая реаниматология. – 2007. – № 3 (5–6). – С. 7–9.
    4. Мороз В.В., Власенко А.В., Голубев А.М., Яковлев В.Н., Алексеев В.Г., Булатов Н.Н., Смелая Т.В. Патогенез и дифференциальная диагностика острого респираторного дистресс-синдрома, обусловленного прямыми и непрямыми этиологическими факторами. Общая реаниматология. – 2011. – № 7 (3). – С. 5 13.
    5. Vasques F, Duscio E, Cipulli F, Romitti F, Quintel M, Gattinoni L. Determinants and Prevention of Ventilator-Induced Lung Injury. Crit Care Clin. 2018 Jul; 34 (3): 343 356.
    6. Chen L, Xia HF, Shang Y, Yao SL. Molecular Mechanisms of Ventilator-Induced Lung Injury. Chin Med J (Engl). 2018 May 20; 131 (10): 1225 1231
    7. Lionetti V., Recchia F., Ranieri V. Overview of ventilator-induced lung injury mechanisms. Curr Opin Crit Care 2005; 11 (1): 82 86.
    8. Moriondo A., Marcozzi C., Bianchin F., Reguzzoni M., Severgnini P., Protasoni M., Raspanti M., Passi A., Pelosi P., Negrini D. Impact of mechanical ventilation and fluid load on pulmonary glycosaminoglycans. Respir Physiol Neurobiol 2012; 181 (3): 308 320.
    9. Kobr J., Fremuth J., Pizingerová K., Fikrlová S., Jehlicka P., Honomichl P., Sasek L., Racek J., Topolcan O. Total body response to mechanical ventilation of healthy lungs: an experimental study in piglets. Physiol Res. 2010; 59 (4): 545 552.
    10. Wilson M., Patel B., Takata M. Ventilation with ‘clinically-relevant’ high tidal volumes does not promote stretch-induced injury in the lungs of healthy mice. Crit Care Med. 2012; 40 (10): 2850–2857.
    11. Bregeon F., Roch A., Delpierre S., Ghigo E., Autillo-Touati A., Kajikawa O., Martin T., Pugin J., Portugal H., Auffray J., Jammes Y. Conventional mechanical ventilation of healthy lungs induced pro-inflammatory cytokine gene transcription. Respir Physiol Neurobiol 2002; 132 (2): 191–203.
    12. Wolthuis E., Choi G., Dessing M., Bresser P., Lutter R., Dzoljic M., van der Poll T., Vroom M., Hollmann M., Schultz M. Mechanical ventilation with lower tidal volumes and positive end-xpiratory pressure prevents pulmonary inflammation in patients without preexisting lung injury. Anesthesiology 2008; 108 (1): 46 54.
    13. De Campos T. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med. 2000; 342: 1301–1308.
    14. Esteban A., Frutos-Vivar F., Muriel A., Ferguson N., Peñuelas O., Abraira V., Raymondos K., Rios F., Nin N., Apezteguía C., Violi D., Thille A., Brochard L., González M., Villagomez A., Hurtado J., Davies A., Du B., Maggiore S., Pelosi P., Soto L., Tomicic V., D'Empaire G., Matamis D., Abroug F., Moreno R., Soares M., Arabi Y., Sandi F., Jibaja M., Amin P., Koh Y., Kuiper M., Bülow H., Zeggwagh A., Anzueto A. Evolution of mortality over time in patients receiving mechanical ventilation. Am J Respir Crit Care Med. 2013; 188 (2): 220 230.
    15. Zupancich E., Paparella D., Turani F., Munch C., Rossi A., Massaccesi S., Ranieri V. Mechanical ventilation affects inflammatory mediators in patients undergoing cardiopulmonary bypass for cardiac surgery: a randomized clinical trial. J Thorac Cardiovasc Surg. 2005; 130 (2): 378 383.
    16. Wrigge H., Uhlig U., Zinserling J., Behrends-Callsen E., Ottersbach G., Fischer M., Uhlig S., Putensen C. The effects of different ventilatory settings on pulmonary and systemic inflammatory responses during major surgery. Anesth Analg. 2004 Mar; 98 (3): 775 781.
    17. Koner O., Celebi S., Balci H., Cetin G., Karaoglu K., Cakar N. Effects of protective and conventional mechanical ventilation on pulmonary function and systemic cytokine release after cardiopulmonary bypass. Intensive Care Med. 2004; 30 (4): 620 626.
    18. Weingarten T., Whalen F., Warner D., Gajic O., Schears G., Snyder M., Schroeder D., Sprung J. Comparison of two ventilatory strategies in elderly patients undergoing major abdominal surgery. Br J Anaesth. 2010; 104 (1): 16 22.
    19. Severgnini P., Selmo G., Lanza C., Chiesa A., Frigerio A., Bacuzzi A., Dionigi G., Novario R., Gregoretti C., de Abreu M., Schultz M., Jaber S., Futier E., Chiaranda M., Pelosi P. Protective mechanical ventilation during general anesthesia for open abdominal surgery improves postoperative pulmonary function. Anesthesiology. 2013; 118 (6): 1307 1321.
    20. Futier E., Constantin J., Paugam-Burtz C., Pascal J., Eurin M., Neuschwander A., Marret E., Beaussier M., Gutton C., Lefrant J., Allaouchiche B., Verzilli D., Leone M., De Jong A., Bazin J., Pereira B., Jaber S.; IMPROVE Study Group A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med. 2013; 369 (5): 428 437.
    21. Marret E., Cinotti R., Berard L., Piriou V., Jobard J., Barrucand B., Radu D., Jaber S., Bonnet F.; and the PPV Study Group Protective ventilation during anaesthesia reduces major postoperative complications after lung cancer surgery: A double-blind randomised controlled trial. Eur J Anaesthesiol. 2018 Mar 19.
    22. Ferrando C., Soro M., Unzueta C., Suarez-Sipmann F., Canet J., Librero J., Pozo N., Peiró S., Llombart A., León I., India I., Aldecoa C., Díaz-Cambronero O., Pestaña D., Redondo FJ, Garutti I., Balust J., García JI, Ibáñez M., Granell M., Rodríguez A., Gallego L., de la Matta M., Gonzalez R., Brunelli A., García J., Rovira L., Barrios F., Torres V., Hernández S., Gracia E., Giné M., García M., García N., Miguel L., Sánchez S., Piñeiro P., Pujol R., García-Del-Valle S., Valdivia J., Hernández MJ, Padrón O., Colás A., Puig J., Azparren G., Tusman G., Villar J., Belda J.; Individualized PeRioperative Open-lung VEntilation (iPROVE) Network. Individualised perioperative open-lung approach versus standard protective ventilation in abdominal surgery (iPROVE): a randomised controlled trial. Lancet Respir Med. 2018 Mar; 6 (3): 193 203.
    23. Serpa Neto A., Simonis F., Barbas C., Biehl M., Determann R., Elmer J., Friedman G., Gajic O., Goldstein J., Horn J., Juffermans N., Linko R., de Oliveira R., Sundar S., Talmor D., Wolthuis E., de Abreu M., Pelosi P., Schultz M Association between tidal volume size, duration of ventilation, and sedation needs in patients without acute respiratory distress syndrome: an individual patient data meta-analysis. Intensive Care Med. 2014; 40 (7): 950 957.
    24. Guay J., Ochroch EA. Intraoperative use of low volume ventilation to decrease postoperative mortality, mechanical ventilation, lengths of stay and lung injury in patients without acute lung injury. Cochrane Database Syst Rev. 2015 Dec 7; (12): CD011151.
    25. Lee P., Helsmoortel C., Cohn S., Fink M. Are low tidal volumes safe? Chest 1990; 97 (2): 430 434.
    26. Pinheiro de Oliveira R., Hetzel M., dos Anjos Silva M., Dallegrave D., Friedman G. Mechanical ventilation with high tidal volume induces inflammation in patients without lung disease. Crit Care. 2010; 14 (1): R1.
    27. Determann R., Royakkers A., Wolthuis E., Vlaar A., Choi G., Paulus F., Hofstra J., de Graaff M., Korevaar J., Schultz M. Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without acute lung injury: a preventive randomized controlled trial. Respir Physiol Neurobiol. 2002; 132 (2): 191 203.
    28. Serpa Neto A., Juffermans NP, Hemmes SNT, Barbas CSV, Beiderlinden M., Biehl M., Fernandez-Bustamante A., Futier E., Gajic O., Jaber S., Kozian A., Licker M., Lin WQ, Memtsoudis SG, Miranda DR, Moine P., Paparella D., Ranieri M., Scavonetto F., Schilling T., Selmo G., Severgnini P., Sprung J., Sundar S., Talmor D., Treschan T., Unzueta C., Weingarten TN, Wolthuis EK, Wrigge H, de Abreu MG, Pelosi P., Schultz MJ; PROVE Network Investigators. Interaction between peri-operative blood transfusion, tidal volume, airway pressure and postoperative ARDS: an individual patient data meta-analysis. Ann Transl Med. 2018 Jan; 6 (2): 23.
    29. Nahum A., Hoyt J., Schmitz L., Moody J., Shapiro R., Marini J. Effect of mechanical ventilation strategy on dissemination of intratracheally instilled Escherichia coli in dogs. Crit Care Med. 1997; 25 (10): 1733–1743.
    30. Villar J., Cabrera N., Casula M., Flores C., Valladares F., Muros M., Blanch L., Slutsky A., Kacmarek R. Mechanical ventilation modulates Toll-like receptor signaling pathway in a sepsis-induced lung injury model. Intensive Care Med. 2010; 36 (6): 1049 1057.
    31. Savel R., Yao E., Gropper M. Protective effects of low tidal volume ventilation in a rabbit model of Pseudomonas aeruginosa-induced acute lung injury. Crit Care Med. 2001; 29 (2): 392 398.
    32. Kurahashi K., Ota S., Nakamura K., Nagashima Y., Yazawa T., Satoh M., Fujita A., Kamiya R., Fujita E., Baba Y., Uchida K., Morimura N., Andoh T., Yamada Y. Effect of lung-protective ventilation on severe Pseudomonas aeruginosa pneumonia and sepsis in rats. Am J Physiol Lung Cell Mol Physiol. 2004; 287 (2): L402–410.
    33. Villar J., Herrera-Abreu M., Valladares F., Muros M., Pérez-Méndez L., Flores C., Kacmarek R. Experimental ventilator-induced lung injury: exacerbation by positive end-expiratory pressure. Anesthesiology 2009; 110 (6): 1341 1347.
    34. Smeding L., Kuiper J., Plötz F., Kneyber M., Groeneveld A. Aggravation of myocardial dysfunction by injurious mechanical ventilation in LPS-induced pneumonia in rats. Respir Res. 2013; 14: 92.
    1. Чучалин А.Г. (ред.) Респираторная медицина: руководство. – Москва: ГЭОТАР-Медиа, 2007. – 1616 с.
    2. Гельфанд Б.Р. Нозокомиальная пневмония у взрослых. Российские национальные рекомендации. – М.: МИА, 2016. – 176 с.
    3. Timsit JF, Esaied W., Neuville M., Bouadma L., Mourvllier B. Update on ventilator-associated pneumonia. F1000Res. 2017 Nov 29; 6: 2061.
    4. Reignier J., Darmon M., Sonneville R., et al.: Impact of early nutrition and feeding route on outcomes of mechanically ventilated patients with shock: a post hoc marginal structural model study. Intensive Care Med. 2015; 41 (5): 875–86.
    5. Fitch ZW, Whitman GJ: Incidence, risk, and prevention of ventilator-associated pneumonia in adult cardiac surgical patients: a systematic review. J Card Surg. 2014; 29 (2): 196–203.
    6. Schwebel C., Clec'h C., Magne S., et al. : Safety of intrahospital transport in ventilated critically ill patients: a multicenter cohort study*. Crit Care Med. 2013; 41 (8): 1919–28.
    7. Bornstain C., Azoulay E., De Lassence A., et al.: Sedation, sucralfate, and antibiotic use are potential means for protection against early-onset ventilator-associated pneumonia. Clin Infect Dis. 2004; 38 (10): 1401-8.
    8. Rello J., Lode H., Cornaglia G., et al.: A European care bundle for prevention of ventilator-associated pneumonia. Intensive Care Med. 2010; 36 (5): 773–80.
    9. Bouadma L., Deslandes E., Lolom I., et al.: Long-term impact of a multifaceted prevention program on ventilator-associated pneumonia in a medical intensive care unit. Clin Infect Dis. 2010; 51 (10): 1115–22.
    10. Muscedere J., Sinuff T., Heyland DK, et al.: The clinical impact and preventability of ventilator-associated conditions in critically ill patients who are mechanically ventilated. Chest. 2013; 144 (5): 1453–60.
    11. Morris AC, Hay AW, Swann DG, et al.: Reducing ventilator-associated pneumonia in intensive care: impact of implementing a care bundle. Crit Care Med. 2011; 39 (10): 2218–24.
    12. Speck K., Rawat N., Weiner NC, et al.: A systematic approach for developing a ventilator-associated pneumonia prevention bundle. Am J Infect Control. 2016; 44 (6): 652–6.
    13. de Smet AM, Kluytmans JA, Cooper BS, et al.: Decontamination of the digestive tract and oropharynx in ICU patients. N Engl J Med. 2009; 360 (1): 20–31.
    14. Oostdijk EAN, Kesecioglu J., Schultz MJ, et al. Effects of decontamination of the oropharynx and intestinal tract on antibiotic resistance in ICUs: a randomized clinical trial. JAMA. 2014; 312 (14): 1429–37.
    15. Rabello F., Araújo VE, Magalhães S. Effectiveness of oral chlorhexidine for the prevention of nosocomial pneumonia and ventilator-associated pneumonia in intensive care units: Overview of systematic reviews. Int J Dent Hyg. 2018 Feb 23.
    16. DeRiso AJ II, Ladowski JS, Dillon TA, Justice JW, Peterson AC. Chlorhexidine gluconate 0.12 % oral rinse reduces the incidence of total nosocomial respiratory infection and nonprophylactic systemic antibiotic use in patients undergoing heart surgery. Chest 1996; 109 (06): 1556–1561.
    17. Gjermo P. Chlorhexidine in dental practice. J Clin Periodontol 1974;1 (03): 143–152.
    18. Briner WW, Grossman E., Buckner RY. Effect of chlorhexidine gluconate mouthrinse on plaque bacteria. J Periodontal Res 1986; 21 (Suppl 16): 44–52.
    19. Chan EY, Ruest A., Meade MO, Cook DJ. Oral decontamination for prevention of pneumonia in mechanically ventilated adults: systematic review and meta-analysis. BMJ 2007; 334 (7599): 889.
    20. Labeau SO, Van de Vyver K., Brusselaers N., Vogelaers D., Blot SI. Prevention of ventilator-associated pneumonia with oral antiseptics: a systematic review and meta-analysis. Lancet Infect Dis. 2011; 11 (11):845–854.
    21. Hua F., Xie H., Worthington HV, Furness S., Zhang Q., Li C. Oral hygiene care for critically ill patients to prevent ventilator-associated pneumonia. Cochrane Database Syst Rev 2016;10: CD008367.
    22. Coffin SE, Klompas M., Classen D., et al. Strategies to prevent ventilator-associated pneumonia in acute care hospitals. Infect Control Hosp Epidemiol 2008; 29 (Suppl 1): S31–S40.
    23. Muscedere J., Dodek P., Keenan S., Fowler R., Cook D., Heyland D.; VAP Guidelines Committee and the Canadian Critical Care Trials Group. Comprehensive evidence-based clinical practice guidelines for ventilator-associated pneumonia: diagnosis and treatment. J Crit Care 2008; 23 (01): 138–147
    24. Rello J., Lode H., Cornaglia G., Masterton R.; VAP Care Bundle Contributors. A European care bundle for prevention of ventilator-associated pneumonia. Intensive Care Med 2010; 36 (05): 773–780.
    25. Klompas M: Oropharyngeal Decontamination with Antiseptics to Prevent Ventilator-Associated Pneumonia: Rethinking the Benefits of Chlorhexidine. Semin Respir Crit Care Med. 2017; 38 (3): 381–90.
    26. Klompas M., Speck K., Howell MD, Greene LR, Berenholtz SM. Reappraisal of routine oral care with chlorhexidine gluconate for patients receiving mechanical ventilation: systematic review and meta-analysis. JAMA Intern Med 2014; 174 (05): 751–761.
    27. Price R., MacLennan G., Glen J.; SuDDICU Collaboration. Selective digestive or oropharyngeal decontamination and topical oropharyngeal chlorhexidine for prevention of death in general intensive care: systematic review and network meta-analysis. BMJ 2014; 348: g2197.
    28. Klompas M., Li L., Kleinman K., Szumita PM, Massaro AF. Associations between ventilator bundle components and outcomes. JAMA Intern Med 2016; 176 (09): 1277–1283.
    29. Hirata K., Kurokawa A. Chlorhexidine gluconate ingestion resulting in fatal respiratory distress syndrome. Vet Hum Toxicol 2002; 44 (02): 89–91.
    30. Kempen PM. A tale of silent aspiration: are guidelines good for every patient? Anesth Analg 2015; 121 (03): 829–831.
    31. Orito K., Hashida M., Hirata K., Kurokawa A., Shirai M., Akahori F. Effects of single intratracheal exposure to chlorhexidine gluconate on the rat lung. Drug Chem Toxicol 2006; 29 (01): 1–9.
    32. Xue Y., Zhang S., Yang Y., et al. Acute pulmonary toxic effects of chlorhexidine (CHX) following an intratracheal instillation in rats. Hum Exp oxicol 2011; 30 (11): 1795–1803.
    33. Massano G., Ciocatto E., Rosabianca C., Vercelli D., Actis GC, Verme G. Striking aminotransferase rise after chlorhexidine self-poisoning. Lancet 1982; 1 (8266): 289.
    34. Plantinga NL, Wittekamp BH, Leleu K., et al. Oral mucosal adverse events with chlorhexidine 2 % mouthwash in ICU. Intensive Care Med 2016; 42 (04): 620–621.
    35. Deschepper M., Waegeman W., Eeckloo K., Vogelaers D., Blot S. Effects of chlorhexidine gluconate oral care on hospital mortality: a hospital-wide, observational cohort study. Intensive Care Med. 2018 May 9.
    36. Klompas M. What is new in the prevention of nosocomial pneumonia in the ICU? Curr Opin Crit Care. 2017 Oct; 23 (5): 378 384.
    37. Wang L., Li X., Yang Z., et al. Semi-recumbent position versus supine position for the prevention of ventilator-associated pneumonia in adults requiring mechanical ventilation. Cochrane Database Syst Rev 2016; (1): CD009946.
    38. Panigada M., Li Bassi G., RanzaniOT, et al. Multicenter randomized clinical trial of lateral-trendelenburg vs. semi recumbent position for the prevention of ventilator-associated pneumonia – the GRAVITY-VAP Trial. Intens Care Med Exp 2016; 4(Suppl 1): 27.
    39. Esteban A., Frutos F., Tobin MJ, et al. A comparison of four methods of weaning patients from mechanical ventilation. Spanish Lung Failure collaborative Group. N Engl J Med 1995; 332: 345–350.
    40. Ely EW, Baker AM, Dunagan DP, et al. Effect on the duration of mechanical ventilation of identifying patients capable of breathing spontaneously. N Engl J Med 1996; 335: 1864–1869.
    41. Kress JP, Pohlman AS, O’Connor MF, Hall JB. Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med 2000; 342: 1471–1477.
    42. Girard TD, Kress JP, Fuchs BD, et al. Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (awakening and breathing controlled trial): a randomised controlled trial. Lancet 2008; 371: 126–134.
    43. Caroff DA, Li L., Muscedere J., Klompas M. Subglottic secretion drainage and objective outcomes: a systematic review and meta-analysis. Crit Care Med 2016; 44: 830–840
    44. Bo L., Li J., Tao T., et al. Probiotics for preventing ventilator-associated pneumonia. Cochrane Database Syst Rev 2014; (10): CD009066.
    45. Zeng J., Wang CT, Zhang FS, et al. Effect of probiotics on the incidence of ventilator-associated pneumonia in critically ill patients: a randomized controlled multicenter trial. Intens Care Med 2016; 42: 1018–1028.
    46. Cook DJ, Johnstone J., Marshall JC, et al. Probiotics: prevention of severe pneumonia and endotracheal colonization trial-PROSPECT: a pilot trial. Trials 2016; 17: 377.
    47. Weng H., Li JG, Mao Z., Feng Y., Wang CY, Ren XQ, Zeng XT. Probiotics for Preventing Ventilator-Associated Pneumonia in Mechanically Ventilated Patients: A Meta-Analysis with Trial Sequential Analysis. Front Pharmacol. 2017 Oct 9;8: 717.
    48. Bos LD, Stips C., Schouten LR, van Vught LA, Wiewel MA, Wieske L., van Hooijdonk RT, Straat M., de Beer FM, Glas GJ, Visser CE, de Jonge E., Juffermans NP, Horn J., Schultz MJ. Selective decontamination of the digestive tract halves the prevalence of ventilator-associated pneumonia compared to selective oral decontamination. Intensive Care Med. 2017 Oct; 43 (10): 1535 1537.
    49. Daneman N., Sarwar S., Fowler RA, et al. Effect of selective decontamination on antimicrobial resistance in intensive care units: a systematic review and meta-analysis. Lancet Infect Dis 2013; 13: 328–341.

    Страница обновлена: 05.12.2022 в 15:19:01