Creation of a Low-Coast Feed Production Technology as a Basis for the Development of the Dairy Cattle Breeding
Vladimir Varlamov1, Elena Varlamova1
1 Пензенская государственная сельскохозяйственная академия
Download PDF | Downloads: 26 | Citations: 14
Journal paper
Food Policy and Security (РИНЦ, ВАК)
опубликовать статью | оформить подписку
Volume 1, Number 1 (October-December, 2014)
Indexed in Russian Science Citation Index: https://elibrary.ru/item.asp?id=24219145
Cited: 14 by 19.12.2023
Abstract:
Long-term research works that were performed with account of the region’s agroclimatic resources and biological features of plants have enabled to develop the theoretical and practical grounds for formation of high-production agrophytocenoses consisting of biologically diverse cultures.
The indices of biological effectiveness of perennial mixtures in conditions of Middle Volga’ wooded steppe have been established for the first time. Based upon the correlation and regressive analysis, patterns of formation of sustainably productive mixed herb layers have been determined. The positive role played by the leguminous component of agrophytocenosis in the increase of its sustainability and productivity has been proven. The argoenergetic proof of effectiveness of perennial mixture cultivation is given.
Based on the research results, grass mixtures of the Eastern galega with the awnless brome and the reed fescue have been developed, probed in industrial conditions and introduced in the farms of Penza Region. They provide 5,7-6,4 t of feed units per hectare and 1,1-1,3 t of digestable protein.
Keywords: perennial grass mixtures, productive longevity, balanced energy- protein feeds, herbage quality management, energetic effectiveness of agrophytocenoses
JEL-classification: Q16
Введение
Согласно Государственной программе развития сельского хозяйства и регулирования рынков сельскохозяйственной продукции, сырья и продовольствия на 2013-2020 годы ожидаемые результаты от реализации подпрограммы «Развитие молочного скотоводства» следующие: рост производства молока до 38,2 млн. тонн к 2020 году; рост товарности молока в сельскохозяйственных организациях, крестьянских (фермерских) хозяйствах, включая индивидуальных предпринимателей, с 90 до 92,5 процента; строительство, модернизация и ввод животноводческих комплексов молочного направления (молочных ферм) за 2015-2020 годы на 560 тыс. скотомест [1, 5].
К сожалению, в данном документе нет ни одного слова по развитию отрасли кормопроизводства и обеспечению поголовья энергонасыщенными и сбалансированными по питательным веществам кормами, которые по разным оценкам занимают от 40-60% в структуре затрат на животноводческую продукцию. Сдерживающим фактором развития животноводства является, прежде всего, энерго-протеиновый дефицит в кормлении животных. Недостаток обменной энергии и белка в их рационах составляет 15-20 % и более, что вызывает перерасход кормов, по данным Всероссийского института кормов, в 1,3-1,5 раза.
Основу энергно-протеинового рациона составляют травянистые корма, а именно смешанные посевы многолетних трав, которые позволяют создать низкозатратное производство полноценных кормов в системе «почва – растение – животное – животноводческая продукция».
В связи с этим важное значение приобретает организация адаптивного кормопроизводства на основе создания высокопродуктивных смешанных агрофитоценозов, которые позволяют обеспечить не только высокие и устойчивые урожаи высококачественной зеленой массы, но и получать неполегаемый травостой и создавать благоприятные условия для последующих культур севооборота [4].
Методика проведения исследований
Экспериментальная работа выполнена в учебно-опытном хозяйстве Пензенской государственной сельскохозяйственной академии, часть опытов и производственная проверка проводилась в хозяйствах Пензенской области.
Решение поставленных задач осуществлялось постановкой и проведением многовариантных двухфакторных полевых опытов, сопровождавшихся сопутствующими наблюдениями, учетами и анализами.
Объект исследований – козлятник восточный сорт Гале, клевер луговой – Пеликан, кострец безостый – Пензенский 1, овсяница тростниковая – Сура, ежа сборная – Торпеда, а также двух и трехвидовые агрофитоценозы при различном комбинативном сочетании трав. Нормы посева трав в смесях рассчитывались по заданным соотношениям (45+70%; 60+55%; 75+40%)от нормы чистого посева с учетом посевной годности. Схема опыта представлена в таблице.
Опыты закладывали и проводили в соответствии с методическими указаниями Б.А. Доспехова (1979, 1989), ВНИИ кормов им. В.Р. Вильямса (1971, 1987), Государственной комиссии по сортоиспытанию сельскохозяйственных культур (1971), ВАСХНИЛ (1989), МСХА им. К.А. Тимирязева (1995) и других научных учреждений. Повторность четырехкратная, размещение вариантов систематическое, площадь делянки 25 м2.
Почва опытного участка – чернозем выщелоченный, среднегумусный, среднемощный, тяжелосуглинистый. Почвообразующие породы – делювиальные легкие глины. Содержание гумуса в пахотном слое 6,5%, подвижного фосфора (по Чирикову) – 10,3 мг/100 г, обменного калия – 13,5 мг на 100 г почвы, рНКCl – 5,2, НГ –7,12-7,86 мг-экв./100 г, степень насыщения основаниями – 80,8-82,3.
Результаты исследований
При формировании урожая фитоценоза важная роль принадлежит конкурентным взаимоотношениям растений. Количество компонентов смеси оказало значительное влияние на урожайность зеленой массы по годам жизни. В простых смесях наибольшая урожайность зеленой массы приходилась на 4-6-й годы жизни 32,9-33,1 т/га (рис. 1).
Увеличение нормы высева бобовых компонентов в смесях с 45 до 75% способствовало повышению урожайности смесей. В среднем за 9 лет жизни урожайность зеленой массы бинарных агрофитоценозов увеличилась на 17,9% и составила 30,56 т/га.
Рисунок 1. Сравнительная оценка урожайности зеленой массы многолетних трав и их смесей, т/га
Источник: Составлено авторами
Среди травосмесей в среднем за 2-9-й годы жизни наибольшую урожайность зеленой массы 33,19 т/га сформировал агрофитоценоз козлятник + овсяница при соотношении компонентов 75+40%. В тройных агрофитоценозах наибольший урожай зеленой массы получен в смеси козлятник + клевер + овсяница 16,01 т/га.
Дисперсионный анализ урожайности зеленой массы показал, что видовой состав агрофитоценоза оказал более значительное влияние на урожайность смесей, чем соотношение компонентов. В первые 4 года жизни наибольший достоверный сбор зеленой массы формирует смесь козлятника с овсяницей, а в последующие годы – агрофитоценоз козлятника и ежи сборной.
При дисперсионном анализе данных суммарных урожаев зеленой массы за весь период опыта установлено, что агрофитоценоз козлятник + овсяница сохранял наибольшую существенную разницу до 7 года жизни. Начиная с восьмого года между смесями козлятник + овсяница и козлятник + ежа не обнаружено существенных различий.
Оценка биологической эффективности смешанных посевов является проблемой, заслуживающей особого внимания. Биологические процессы, ответственные за отклонения в продуктивности, сложны и многообразны. Наиболее важным механизмом, приводящим к тому, что биомасса растения данного генотипа в смеси отличается от таковой в монокультуре, является конкуренция за ресурсы [2]. Для оценки критерия биологической эффективности смешанных посевов мы использовали показатель отношения земельных эквивалентов (Land Equivalent Ratio, LER).
Рисунок 2. Динамика показателя LER по годам жизни
Источник: Составлено авторами
На величину коэффициента биологической эффективности травосмесей большое влияние оказывает количество компонентов в смеси и продолжительность использования травостоя (рис. 2). В бинарных смесях коэффициент биологической эффективности постепенно увеличивается с 0,97 (1-й год жизни) до 1,38 (4-й год жизни). Затем следует незначительный спад до 1,22 и своего максимума данный показатель достигает на 7-й год жизни (1,49). К 8-му году жизни коэффициент биологической эффективности вновь несколько снижается. Таким образом, в формировании LER просматривается цикличность: когда незначительные спады чередуются с ростом данного значения. В тройных агрофитоценозах величина LER достигает максимума на 4-й год жизни, а затем резко снижается, становясь меньше единицы. При значении LER< 1 одновидовые посевы трав, входящие в состав данных смесей биологически эффективнее, то есть монопосев может сформировать аналогичный урожай на меньшей земельной площади.
Следует отметить, что бинарные смеси оказались более эффективными по сравнению с трехкомпонентными за исключением 1-го года жизни. Так, величина LER двойных смесей была на 6,1-67,4% выше. Данный факт по нашему мнению связан с постепенным вытеснением и выпадением бобового компонента из трехчленного травостоя.
Проведенный регрессионный анализ показывает, что на величину биологической эффективности посевов многолетних травосмесей большое влияние оказывает ботанический состав травостоя и, прежде всего доля в нем бобового компонента. Уравнения регрессии имеют вид:
1-й год
жизни
|
У =
0,687 + 0,046х
|
r
= 0,819
|
2-й год
жизни
|
У =
0,698 + 0,019х
|
r
= 0,655
|
3-й год
жизни
|
У =
0,848 + 0,013х
|
r
= 0,936
|
4-й год
жизни
|
У =
1,17 + 0,007х
|
r
= 0,860
|
5-й год
жизни
|
У =
1,14 + 0,003х
|
r
= 0,389
|
6-й год
жизни
|
У =
1,03 + 0,033х
|
r
= 0,927
|
7-й год
жизни
|
У =
0,890 + 0,046х
|
r
= 0,971
|
8-й год
жизни
|
У =
0,878 + 0,032х
|
r
= 0,938
|
9-й год
жизни
|
У =
0,860 + 0,042х
|
r
= 0,949
|
х – доля бобового компонента в смеси (в интервале 4,16 ‑36,54 т/га).
Таким образом, биологическую эффективность бобово-злаковых травостоев определяет содержание в них бобового компонента, и в частности козлятника восточного. Коэффициент корреляции указывает на умеренно прочное отношение между переменными, за исключением 5-го года жизни, когда коэффициент корреляции составил лишь 0,389.
Один из основных показателей, характеризующих кормовую ценность травостоя – содержание протеина. Установлена корреляционная связь между содержанием протеина в сухой массе бобово-злаковых смесей и содержанием бобовых в урожае агрофитоценоза. Уравнения регрессии, описывающие данную закономерность, по годам жизни травостоев имеют вид:
1-й год
жизни
|
У =
5,12 + 0,179х
|
r
= 0,754
|
2-й год
жизни
|
У =
3,86 + 0,183х
|
r
= 0,853
|
3-й год
жизни
|
У =
9,20 + 0,092х
|
r
= 0,730
|
4-й год
жизни
|
У =
13,0 + 0,309х
|
r
= 0,639
|
5-й год
жизни
|
У =
13,4 + 0,023х
|
r
= 0,595
|
6-й год
жизни
|
У =
1,78 + 0,198х
|
r
= 0,727
|
7-й год
жизни
|
У =
1,98 + 0,215х
|
r
= 0,641
|
8-й год
жизни
|
У =
4,51 + 0,181х
|
r
= 0,444
|
9-й год
жизни
|
У =
8,39 + 0,115х
|
r
= 0,251
|
х – доля бобовых в травостое, т/га.
Корреляционная зависимость между показателями содержание протеина и доля бобовых в травостое изменяется в зависимости от возраста травостоя: в 1-3-й и 6-й годы сильная, в 4-5-й и 7-8-й годы средняя и на 9-й год – слабая. Наблюдается тенденция в ослаблении связи между изучаемыми признаками по мере развития травостоя, что связано с накоплением органического вещества в почве и его постепенным разложением, увеличением содержания протеина в злаковом компоненте.
Изучение элементов продуктивности многолетних смесей показало, что сбор сухого вещества, переваримого протеина, кормовых единиц и обменной энергии увеличивался по мере увеличения возраста травостоя до определенного предела. Максимум содержания питательных веществ приходится на 4-й год жизни агрофитоценозов. Затем, к пятому году жизни выход сухого вещества снижается на 18,2%, к 6-му – на 22,6%, а на 8-й и 9-й годы жизни – на 58,5 и 62,5% соответственно.
Анализ продуктивности бобово-злаковых смесей показал, что в среднем за девять лет жизни наибольший сбор сухого вещества был получен в травосмеси козлятника с овсяницей при их соотношении 75+40% - 7,46 т/га, затем следуют агрофитоценозы козлятник+ежа и козлятник+кострец 7,39 и 7,17 т/га сухого вещества соответственно (см. табл. 1). Наименьший выход сухого вещества оказался в тройных агрофитоценозах, и в частности в смеси козлятник + клевер + кострец – 3,03-3,21 т/га.
Таблица 1
Продуктивность посевов бобово-злаковых смесей (среднее за 2-9 г.ж.)
Источник: Составлено авторами.
Дисперсионный анализ показал, что по фактору А (соотношение бобового и злакового компонента) увеличение сбора сухого вещества было достоверным во все годы исследований, за исключением первого и 4-го года жизни. Дисперсионный анализ по фактору В (травосмесь) показал, что достоверность сбора сухого вещества определялся продолжительностью жизни травостоя. Так, в первые три года жизни агрофитоценозов увеличение урожайности сухого вещества было достоверным по всем градациям данного фактора. На 4-й год жизни не отмечено существенных различий в сборе сухого вещества между смесями козлятник + кострец и козлятник + ежа. Начиная с 5-го года жизни отсутствуют достоверные различия в сборе сухого вещества между агрофитоценозами козлятник + кострец и козлятник + овсяница.
Таким образом, в первые 4 года жизни многолетних смесей наибольший достоверный сбор сухого вещества отмечается в агрофитоценозе козлятник + овсяница, а в дальнейшем преимущество имеет травосмесь козлятник + ежа.
При дисперсионном анализе данных суммарных урожаев зеленой массы за весь период опыта установлено, что агрофитоценоз козлятник + овсяница сохранял наибольшую существенную разницу до 7 года жизни. Начиная с восьмого года между смесями козлятник + овсяница и козлятник + ежа не обнаружено существенных различий.
Проведенный регрессионный анализ показывает, что на величину накопления сухого вещества посевами многолетних травосмесей большое влияние оказывает ботанический состав травостоя и, прежде всего доля в нем бобового компонента. Уравнения регрессии имеют вид:
45+70%
|
У = 2,36 + 0,247х
|
r = 0,964
|
60+55%
|
У = 2,49 + 0,220х
|
r = 0,955
|
75+40%
|
У = 2,71 + 0,202х
|
r = 0,944
|
х – доля бобового компонента в смеси, т/га.
Таким образом, сбор сухого вещества в бобово-злаковых травостоях определяет содержание в них бобового компонента, и в частности козлятника восточного. Коэффициент корреляции указывает на тесную взаимосвязь между переменными.
При изучении основных показателей качества зеленой массы были установлены следующие закономерности: с увеличением возраста травостоя возрастает содержание сырой клетчатки и снижается обеспеченность кормовой единицы и обменной энергии переваримым протеином при относительно стабильной величине СПО; увеличение обеспеченности переваримым протеином кормовой единицы и обменной энергии при возрастании доли бобового компонента в травостое с одновременным снижением количества сырой клетчатки в единице сухого вещества и величины СПО.
Наименьшее содержание сырой клетчатки в килограмме сухого вещества содержалось в первый год жизни многолетних смесей 25,13%. По мере старения травостоя данный показатель увеличивается к третьему году жизни на 3,0%, к 5-му – на 4,4%, к 7-му – на 6,9% и к 9-му году – на 9,3%. Однако следует отметить, что уровень сырой клетчатки в смешанных агрофитоценозах остается оптимальным (28-24%).
Максимум обеспеченности единицы обменной энергии переваримым протеином приходится на второй год жизни смесей и составляет 10,06 г, снижаясь к девятому году в среднем на 6,0%.
Определено, что наиболее стабильна для смешанных посевов величина СПО, которая остается практически неизменной (0,84-0,85) до седьмого года жизни (см. рис. 3). К девятому году СПО несколько возрастает, что связано с некоторым снижением количества протеина.
Рисунок 3. Динамика качества зеленой массы травосмесей по годам жизни
Источник: Составлено авторами
Наибольшая обеспеченность кормовой единицы переваримым протеином отмечается на 2-й год жизни, постепенно снижаясь до уровня 116 г к девятому году жизни или на 3,3%.
Состав агрофитоценоза также оказал значительное влияние на обеспеченность переваримым протеином, обменной энергией и уровень сырой клетчатки. Так, при увеличении количества бобовых с 45 до 75% наблюдается снижение количества сырой клетчатки в сухом веществе на 11,9-12,1%. Причем в бинарных смесях содержание сырой клетчатки в среднем на 5,4-6,5% ниже, чем в тройных агрофитоценозах. Обеспеченность энергии переваримым протеином с увеличением доли бобовых в агрофитоценозе возрастает, как в бинарных, так и в тройных агрофитоценозах в среднем на 16,1-25,1%.
Наиболее приемлемым методом анализа кормопроизводства является агроэнергетическая оценка производства кормов, где используется универсальный энергетический показатель – отношение аккумулированной в продукции к затраченной на ее получение энергии. Это дает возможность в любых экономических ситуациях наиболее точно учесть и единообразно выразить не только прямые затраты энергии на технологию, но и энергию, воплощенную в средствах производства и в произведенной продукции. Проведенный на этой основе анализ позволяет оценить эффективность производства кормов и сравнить разные технологии с точки зрения расходов важнейшего вида ресурсов – энергии и определить пути ее экономии.
Затраты на выращивание бобово-злаковых смесей изменялись в зависимости от уровня урожайности. С увеличением выхода зеленой массы с гектара затраты соответственно увеличивались (см. табл. 2).
Таблица 2
Энергетическая эффективность использования многолетних смесей,
сумма за 9 лет
Видовой состав
|
Сбор к.ед., т/га
|
Затраты энергии, ГДж/га
|
Получено энергии, ГДж/га
|
Биоэнер-гетический КПД
|
Себесто-имость 1 к.ед., ГДж
|
45+70%
| |||||
1бобовый+1злаковый
|
44,58
|
85,58
|
545,77
|
6,38
|
1,92
|
2бобовый+1злаковый
|
23,08
|
76,34
|
288,26
|
3,78
|
3,31
|
60+55%
| |||||
1бобовый+1злаковый
|
50,38
|
88,22
|
595,79
|
6,75
|
1,75
|
2бобовых+1злаковый
|
25,96
|
79,42
|
313,99
|
3,95
|
3,06
|
75+40%
| |||||
1бобовый+1злаковый
|
55,76
|
91,74
|
649,09
|
7,08
|
1,65
|
2бобовых+1злаковый
|
28,89
|
80,85
|
342,27
|
4,23
|
2,80
|
Бобовые
|
45,47
|
86,05
|
532,06
|
6,18
|
1,89
|
Злаковые
|
29,16
|
81,86
|
357,63
|
4,37
|
2,81
|
Наибольший энергетический доход был получен в простых бобово-злаковых смесях с заданным соотношением компонентов 75+40% - 649,09 ГДж/га, с биоэнергетическим КПД – 7,08. Использование бинарных смесей с соотношениями бобовых и злаковых компонентов 45+70 и 60+55% давали несколько меньший энергетический доход, однако обеспечивая высокий биоэнергетический потенциал в размере 6,38-6,75. Введение в травостой второго бобового компонента приводило к уменьшению выхода энергии до 288,26-342,27 ГДж/га. Одновидовые посевы бобовых трав накапливали энергии в урожае до 532,06 ГДж/га, что на 22% меньше, чем лучший по энергообеспеченности вариант с 1 бобовым и 1 злаковым компонентами при их соотношении 75+40.
Травостои с соотношением бобовых и злаковых компонентов 75+40% характеризовались наименьшим показателем себестоимости кормовой единицы – 1,65 ГДж/т, тогда как снижение доли бобового компонента в смеси до 60-45% сопровождалось ростом данного показателя в бинарных смесях до 1,75-1,92 ГДж/т.
Как уже указывалось выше, в кормлении животных важны не только валовые выходы питательных веществ, а именно получение зеленой массы заданного качества непосредственно в поле, что позволило сократить расходы на балансирование рационов, особенно в пастбищный период, когда зеленые корма составляют основу при кормлении дойных коров.
Для козлятнико-кострецовых смесей рекомендуется следующий алгоритм использования (см. рис. 4). При построении данной схемы использовались нормы кормления половозрастных дойных коров живой массой 500 кг [3]. Соотношения компонентов многолетних трав при посеве предлагаются в зависимости от требований дойных коров к рациону и качества многолетних смесей за 9 лет жизни. Конкретный агроценоз выбирался в зависимости от наибольшего достоверного суммарного урожая с 1 по 7-й годы жизни и с 1 по 9-й годы жизни.
Рисунок 4. Схема управления качеством многолетних бобово-злаковых ценозов
Источник: Составлено авторами
В связи с этим проведенный химический анализ зеленой массы по основным показателям (количество сырой клетчатки в килограмме сухого вещества, сахаропротеиновое отношение, обеспеченность кормовой единицы переваримым протеином и количество переваримого протеина на МДж обменной энергии) позволил нам разработать алгоритм получения корма заданного качества при различной молочной продуктивности животных. При этом основная балансирующая роль принадлежит соотношению компонентов многолетних и однолетних трав в смешанном ценозе при посеве, а также сроки их уборки.
Заключение
Биологическую эффективность бобово-злаковых травостоев определяет содержание в них бобового компонента, и в частности козлятника восточного. Коэффициент корреляции указывает на умеренно прочное отношение между переменными.
При выборе способа использования кормовой массы многолетних смесей следует учитывать не только валовой выход переваримого протеина, а в первую очередь сахаропротеиновое отношение и обеспеченность кормовой единицы переваримым протеином.
Таким образом, в условиях лесостепи Среднего Поволжья для получения энергонасыщенных и сбалансированных по сахаро-протеиновому отношению кормов козлятниково-злаковые смеси следует высевать с соотношением 75+40%. В качестве злакового компонента для козлятника восточного рекомендуется использовать кострец безостый и овсяницу тростниковую.
Примечание. Сокращения, используемые в статье: К+к – козлятник + кострец; К+о – козлятник + овсяница, К + е – козлятник + ежа; К + к + к – козлятник + клевер + кострец; К + к + о – козлятник + клевер + овсяница; К + к + е – козлятник + клевер + ежа; СПО – сахаро-протеиновое отношение; ПП – переваримый протеин; к. ед. – кормовая единица; СВ – сухое вещество; ОЭ – обменная энергия.
Страница обновлена: 25.04.2025 в 09:13:50