Theoretical aspects of the application of the Baumol model to the assessment of labor productivity in certain sectors of the regional economy

Okorokov V.M.1, Klikunov N.D.1, Zyukin D.V.1
1 Курский институт менеджмента, экономики и бизнеса

Journal paper

Russian Journal of Labour Economics (РИНЦ, ВАК)
опубликовать статью | оформить подписку

Volume 11, Number 8 (August 2024)

Citation:

Indexed in Russian Science Citation Index: https://elibrary.ru/item.asp?id=68644685

Abstract:
The article verifies the Baumol model with respect to industries with growing and stagnating labor productivity. The conditions for the validity of the model were identified. They include an increasing scale effect of production and a relatively high elasticity of production with respect to capital. The purpose of the study was to verify the Baumol model in industries with growing and stagnating labor productivity. To this end, the authors developed and tested a model of sectoral equilibrium in labor markets, determined the conditions of validity of the Baumol model at the intra-industry level, and conducted computer modeling of the model with exogenous changes in model parameters. The theoretical analysis of the Baumol model confirmed the assumption of wage growth in the so-called stagnant sectors of the economy in the absence of technological changes leading to an increase in labor productivity, subject to increasing economies of scale and significant elasticity of labor substitution by capital at the industry level. With respect to industry parameters, it is shown that industries that do not experience favorable technological shocks tend to be socially significant, producing constitutional and public goods. Basic strategic industries, such as construction and agriculture, should fall within the scope of Baumol's law and should experience wage growth in excess of the increase in labor productivity.

Keywords: Baumol model, industries with stagnant labor productivity, modified Cobb-Douglas function

JEL-classification: J71, J78, J81, J24



Введение.

Модель Баумоля является следствием статистического наблюдения связанного со значительным ростом заработных плат в тех секторах экономики, где роста производительности труда не происходит. В качестве примера Уильям Баумоль рассматривал экономику исполнительских искусств [1]. Он утверждает, что «издержки на живые представления упорно повышаются с большей скоростью, чем издержки производства обычных продуктов обрабатывающей промышленности… поскольку производимые товары подвергаются технологическим усовершенствованиям из года в год, а живые представления нет, то почти каждый год билеты в театр и на концерты становятся все более дорогими по сравнению с другими благами. Данный феномен называется «болезнью издержек живых представлений».

В статье предлагается модель организации производства [2] в отраслях с наличием и отсутствием роста производительности труда и анализируются основания для поддержки технологически стагнирующих отраслей со стороны государства.

Методы исследования.

Объектом исследования являются отрасли с растущей и стагнирующей производительностью труда. Методом исследования является экономический анализ, отраслевой производственной функции Кобба-Дугласа с имплементацией в модель с изменяющейся производительностью труда.

Результаты исследования и их обсуждение.

Для теоретической оценки значимости закона Баумоля была разработана следующая экономическая модель, где помимо традиционных факторов труда и капитала используется фактор изменяющейся производительности труда.

Модель отраслевого равновесия при наличии и/или отсутствии технологического воздействия на среднеотраслевую производительность труда.

Пусть:

L – труд, измеряемый в человекочасах;

w – цена труда, измеряемая в стоимости часа труда;

K – капитал, измеряемый в часах фактической/вменной аренды;

r – цена капитала, измеряемая в стоимости аренды единицы капитала в час;

Y – выпуск, рассматриваемый как среднеотраслевой индекс физического производства;

Р – цена выпуска, рассматриваемая как стоимость одной единицы индекса физического производства;

t – технологический фактор или производительность одного человекочаса труда (t≥1), заданная как экзогенный параметр в производственной функции.

Тогда региональная производственная функция будет иметь вид:

Особенность задаваемой отраслевой производственной функции в том, что технологический является характеристикой труда, и не влияет на производительность капитала. В это отличие предлагаемой модели от традиционной модели Солоу [3], в которой технологический параметр влияет на все факторы производства, и труд, и капитал.

Фирмы, находящиеся в отрасли, максимизируют прибыль, как разницу между валовым доходом и совокупными затратами на труд и капитал:

max П(К,L) = P*(t*L)α*Kβ- w*Lr*K,

При этом они рассматривают технологический параметр t, стоимость труда, капитала, и продукции отрасли как экзогенные, и находят оптимальное производственное сочетание между трудом и капиталом.

Максимизируя прибыль, т.е. находя частные производные по труду и капиталу, получаем необходимое условие максимизации функции отраслевой прибыли. Достаточность условия определяется выпуклостью отраслевой производственной функции.

Частная производная по фактору производства «труд»:

Частная производная по фактору производства «капитал»:

Поделив первое равенство на второе получаем условие внутриотраслевого равновесия в условиях совершенной, или близкой к совершенной, конкуренции или условие оптимального сочетания труда и капитала в отрасли:

® K=

Следует обратить внимание на то, что спрос на капитал увеличивается при росте заработной платы и снижается при увеличении цены капитала, т.е. труд и капитал являются замещающими (субституарными) друг друга факторами производства.

Конкуренция в отрасли на уровне региона ведет к тому, что экономическая прибыль, т.е. прибыль с учетом альтернативных форм использования факторов производства будет стремиться к нулю. В этом случае валовые доходы фирм, находящихся в отрасли, будут уравновешены стоимостью совокупных затрат:

P*(t*L)α*Kβ – w*L – r*K =0

Выражая капитал (К) через труд (L), получаем функцию зависимости отраслевого дохода от труда:

P*tα*L α*Lβ*( β- 2* w*L =0

Параметры α и β, являются показателями относительной значимости каждого из факторов производства в итоговом отраслевом продукте. Их техническое название коэффициенты производственной эластичности [4]. Дополнительное свойство этих параметров в производственной функции типа Кобба-Дугласа в том, что если их сумма меньше единицы, то наблюдается убывающий эффект от увеличения масштабов производства, если сумма больше единицы, то возрастающий эффект [5]. Возрастающий эффект означает, что если в отрасли увеличатся объемы задействованного труда и капитала, например, в два раза, то итоговый выпуск в физическом выражении вырастет более, чем в два раза.

Если α+β = 1, то эффект масштаба постоянен, т.е. увеличение или сокращение задействованных факторов производства, труда и капитала, ведет к точно такому же увеличению или сокращению выпуска.

При принятии допущения о постоянстве масштаба производства, получаем условие равновесия на отраслевом рынке труда:

L*(P*t α*( β- 2* w) = 0,

Так объем задействованного в отрасли труда является строго положительным, L>0, то:

®

Избавляясь от степени, получаем функцию зависимости отраслевой заработной от экзогенных параметров цены продукции отрасли, цены капитала, коэффициентов производственной эластичности и, что наиболее важно, от среднеотраслевой производительности труда.

(1)

Заработная плата в отрасли растет с экспонентальной скоростью в зависимости от роста среднеотраслевой производительности труда.

В частном случае, допуская равенство производственных эластичностей труда и капитала, т.е. α=β=0,5, получаем редуцированную формулу зависимости заработной платы от среднеотраслевой производительности труда.

(2)

Фактор производства «труд» и параметр «среднеотраслевая производительность непосредственным образом входят в региональную отраслевую производственную функцию, через исключение капитала [6].

Y = t α*L α* L β(

Это позволяет выразить отраслевую функцию спроса на труд в зависимости заработной платы, среднеотраслевой производительности труда и отраслевого выпуска.

L α+ β= (3)

Увеличение среднеотраслевой производительности труда ведет к снижению спроса на труд.

Если допустить α+β = 1, то редуцированная формула спроса на труд будет выглядеть.

L=

Отраслевые расходы на труд, в первом приближении отраслевой фонд заработной платы (ФОТ) будет равен:

Изменение производительности труда не влияет на суммарный фонд отплаты труда в отрасли, так как увеличение заработной платы полностью компенсируется снижением спроса на труд.

Применительно к рассматриваемой модели Баумоля, можно обобщить, что применительно к исполнительским искусствам, возьмем для примера оркестр, заработная плата каждого оркестранта возрастет, но число оркестров сократится.

Компьютерное моделирование параметров модели.

Компьютерное моделирование параметров предложенной модели позволило получить количественные соотношения, иллюстрирующие зависимость заработной платы спроса на труд от рассмотренных экзогенных факторов.

Таблица 1

Влияние роста производительности труда на заработную плату

Рост производительности труда и заработная плата
p
t
a
b
r
w
1
1
0,5
0,5
1
0,25
1
1,1
0,5
0,5
1
0,28
1
1,15
0,5
0,5
1
0,29
1
1,2
0,5
0,5
1
0,30
1
1,25
0,5
0,5
1
0,31
1
1,3
0,5
0,5
1
0,33
1
2
0,5
0,5
1
0,50
* Составлено автором

При прочих равных условиях рост производительности труд оказывает пропорциональное воздействие на рост заработной платы в отрасли. Подобный вывод следует из статей отечественных авторов [7; 8].

Таблица 2

Влияние увеличения масштабов производства на отраслевую заработную плату

Эффект масштаба и заработная плата
p
t
a
b
r
w
1
1
0,5
0,5
1
0,25
1
1,1
0,5
0,5
1
0,28
1
1,1
0,55
0,55
1
0,24
1
1,1
0,6
0,6
1
0,20
1
1,1
0,65
0,65
1
0,16
* Составлено автором

Рост эффекта масштаба оказывает отрицательное воздействие на отраслевую заработную плату. Эффект масштаба, при прочих равных условиях, характерен для крупных, промышленных динамично развивающихся отраслей, в исполнительских и прочих отраслях, которые рассматривал Баумоль, эффект масштаба отсутствует, что является объяснением роста заработных плат.

Таблица 3

Рост цен на продукцию отрасли и заработная плата

Эффект рынка и заработная плата
p
t
a
b
r
w
1
1
0,5
0,5
1
0,25
1
1,1
0,5
0,5
1
0,28
1,1
1,1
0,5
0,5
1
0,33
1,2
1,1
0,5
0,5
1
0,40
1,3
1,1
0,5
0,5
1
0,46
* Составлено автором

Улучшение отраслевых условий торговли, т.е. относительный рост цен продукции, продаваемой в отрасли, по сравнению со стоимостью полуфабрикатов, покупаемой отраслью, однозначно ведет к росту заработной платы при условии фиксированного объема отраслевых продаж.

Таблица 4

Влияние роста эластичности замещения трудом капитала на отраслевую ставку заработной платы

Эффект эластичности факторов производства
p
t
a
b
r
w
1
1
0,5
0,5
1
0,250
1
1,1
0,5
0,5
1
0,275
1
1,1
0,55
0,45
1
0,312
1
1,1
0,6
0,4
1
0,346
1
1,1
0,65
0,35
1
0,379
1
1,1
0,7
0,3
1
0,409
* Составлено автором

Рост значимости фактора производства «труд» в производственном процессе ведет к увеличению отраслевых ставок заработной платы. Увеличение отраслевой капитализации, и относительный рост значимости капитала в производственном процессе, при прочих равных условиях снижает ставки заработной платы.

Обобщая результаты моделирования можно определить условия существования «эффекта Баумоля» - это ситуация, при которой эффект масштаба и эффект роста эластичности труда капиталом превышает эффект связанный с ростом производительности труда. В этом случае эффект Баумоля будет наблюдаться при сопоставлении промышленных отраслей, с высокой капитализацией и автоматизацией производства, с отраслям, в которых рост производительности труда отсутствует или незначителен.

Интерес представляет анализ влияния изменений объемов выпуска на спрос на труд с учетом возможного роста производительности труда в отрасли [9].

Таблица 5

Влияние эффекта роста объемов выпуска на отраслевой спрос на труд с учетом изменений в производительности труда

Спрос на труд. Эффект объемов выпуска
p
t
a
b
r
w
Y
L
1
1
0,5
0,5
1
0,25
100
200
1
1
0,5
0,5
1
0,25
200
400
1
2
0,5
0,5
1
0,5
200
282,8
* Составлено автором

Рост отраслевых объемов выпуска продукции положительно влияет на рост спроса на труд, но увеличение производительности труда отрицательно сказывается на росте спроса на труд. В качестве механизма трансмиссии выступает заработная плата, приводящая к сдерживанию «аппетитов» фирм, находящихся в отрасли, в отношении найма дополнительного персонала. В целом можно обобщить, что рост производительности труда является сдерживающим фактором при решении фирм о найме дополнительных работников, даже при условии роста отраслевого выпуска.

Теоретический анализ модели Баумоля подтверждает предположение о росте заработных плат в так называемых стагнирующих отраслях экономики с отсутствием технологических изменений, приводящих к росту производительности труда при следующих условиях.

1. Наличие значительного возрастающего эффекта масштаба.

2. Наличие значительной эластичности замещения труда капиталом.

В этом случае относительный рост заработных плат в отраслях со стагнирующей производительностью труда вызывается еще так называемой «болезнью издержек», эффектом роста доходов потребителей и государственной поддержкой отраслей, не испытывающих благоприятных технологических шоков.

К отраслям с относительно стагнирующей производительностью труда исследователи относят сферу государственного и муниципального управления [10], начальное, среднее и высшее образование [11], культуру и отдельные направления в сфере здравоохранения [12]. Для данных отраслей параметр t близок к единице.

Базовые экономические отрасли, такие как сельское хозяйство [13], строительство, поддержание инфраструктуры демонстрируют умеренный рост производительности труда, и для них параметр t больше единицы.

Дальнейший анализ будет направлен на верификацию закона Баумоля применительно к отдельным отраслям региональной экономики и соответствие имеющихся статистических данных теоретическим значениям экономической модели.

Выводы.

1. Отрасли не испытывающие благоприятных технологических шоков, как правило, являются общественно значимыми, производящими конституционные и общественные блага.

2. Базовые стратегические отрасли, такие как строительство и аграрный сектор должны подпадать под сферу действия закона Баумоля, и в них должен наблюдаться опережающий рост заработных плат по отношению к увеличению производительности труда

3. Эмпирическое обоснование представленных теоретических положений должны стать предметом дальнейшего исследования.


References:

Kak sdelat obrazovanie dvigatelem sotsialno-ekonomicheskogo razvitiya? [How can education be made an engine of socio-economic development?] (0). Moscow: Izdatelskiy dom Vysshey shkoly ekonomiki. (in Russian).

Baumol U. (2004). Ispolnitelskie iskusstva [Performing arts] M : Infra-M. (in Russian).

Hashimzare Nigar, Hindriks Jean, Myles D. Gareth (2016). Intermediate Public Economics

Hashimzare Nigar, Hindriks Jean, Myles D. Gareth (2016). Solution manual to accompany Intermediate Public Economics Massachusetts: Massachusetts Institute of Technology.

Klikunov N.D., Shleenko A.V. (2020). Vliyanie radikalnyh i neradikalnyh innovatsiy na tempy dostizheniya statsionarnogo sostoyaniya ekonomicheskoy sistemy s uchetom osobennostey modeli Solou [Incorporation of radical and not radical innovations in model of steady state of robert solow]. Ekonomicheskie i gumanitarnye nauki. Nauchno-prakticheskiy zhurnal. (7). 17-26. (in Russian). doi: 10.33979/2073-7424-2020-342-7-17-25.

Kornyakov V.I. (2014). O sovremennom sposobe deystviya zakona rosta proizvoditelnosti truda i zabytom ekonomicheskom otkrytii I. V. Stalina [On the modern mode of operation of the law of labor productivity growth and the forgotten economic discovery of I. V. Stalin]. Theoretical economy. (3). 8-21. (in Russian).

Kuznetsov Yu.A. (2012). Chelovecheskiy kapital, proizvoditelnost truda, i ekonomicheskiy rost (Okonchanie) [Human capital, labor productivity, and economic growth (The Ending)]. Economic analysis: theory and practice. (44). 2-14. (in Russian).

Mueller Denis C. (2013). Public Choice III Cambridge University Press.

Nicholson Walter (2005). Microeconomic theory. Basic principles and extensions Thomson, Inc.

Pindayk R., Rubinfeld D. (2001). Mikroekonomika [Microeconomics] M. : Delo. (in Russian).

Zhan Tirol. (1996). Rynki i rynochnaya vlast: teoriya organizatsii promyshlennosti [Markets and market power: theory of industrial organization] SPb. : Ekonomicheskaya shkola. (in Russian).

Zhilyakov D. I. (2021). Otsenka podderzhki proizvoditeley v sisteme gosudarstvennogo regulirovaniya razvitiya selskogo khozyaystva [Producers support estimate in the system of state regulation of agriculture development]. Moscow Economic Journal. (2). 21. (in Russian). doi: 10.24411/2413-046X-2021-10097.

Zyukin D.V., Kosinova L.N., Kosinova O.S. (2015). Analiz effektivnosti regionalnoy sistemy upravleniya chelovecheskimi resursami (na primere Kurskoy oblasti) [Analysis of the effectiveness of the regional human resource management system (on the example of the Kursk region)] Enlightenment as a basis for the development of personality and society. 71-75. (in Russian).

Страница обновлена: 26.04.2025 в 05:53:31