Использование виртуального ассистента для управления сбытовой политикой на промышленном предприятии
Suslov D.N.1, Kashkareva E.A.1
1 Сибирский федеральный университет, Russia
Download PDF | Downloads: 19 | Citations: 1
Journal paper
Creative Economy (РИНЦ, ВАК)
опубликовать статью | оформить подписку
Volume 13, Number 12 (December 2019)
Indexed in Russian Science Citation Index: https://elibrary.ru/item.asp?id=42441868
Cited: 1 by 05.09.2022
Abstract:
This article describes a way to obtain information on the market by the manufacturer through information technologies. This paper presents an algorithm of collecting information on the Internet through a virtual collector (parser) and provides recommendations for the further use of the accumulated data. The authors discuss the advantages of the algorithm. The implementation areas are indicated. In addition, the article describes the features of the tool, as well as cases that have an impact on the accuracy of the final data. The goal of the algorithm is to increase effectiveness of relationships between manufacturer and distribution partners.
Keywords: manufacturer, market research, data collection, distribution chain, analysis of parameters
JEL-classification: O31, M11, O33, O32, M21
References:
Bergamaschi S., Carlini E. (2016). Big Data Research in Italy: A Perspective Engineering. 163-170.
Chakrabarti S. (2003). Mining the Web: discovering knowledge from hypertext data M.: Morgan Kaufmann.
Chirkin E.S. (2013). Nekotorye problemy avtomatizirovannogo izvlecheniya dannyh iz veb-stranits [Some problems of automated extraction of data from web pages] The Internet and modern society. 291-294. (in Russian).
Grzywaczewski A., Iqbal R., Shah N., James A. (2010). E-marketing strategy for businesses E-Business Engineering (ICEBE). 428-434.
Hashem I.A.T., Yaqoob I., Anuar N.B., Mokhtar S., Gani A., Khan S.U. (2015). The rise of big data on cloud computing: review and open research issues Information Systems. (47). 98-115.
Hirsch D.D. (2013). Glass house effect: big data, the new oil, and the power ofanalogy Maine Law Review. (66). 373.
Iqbal R., et al. (2016). Big Data analytics: Computational intelligence techniques and application areas International Journal of Information Management. doi: 10.1016/j.ijinfomgt.2016.05.020 .
Semyonov D.A., Oshmarina O.E., Shadrina E.V. (2014). Avtomatizatsiya sbora i obrabotki sportivnoy statistiki dlya posleduyushchego setevogo analiza [Automating the collection and processing of sports statistics for the subsequent network analysis]. Vestnik ngtu im. r.e. alekseeva. seriya: upravlenie v sotsialnyh sistemakh. kommunikativnye tekhnologii. (2). 45-52. (in Russian).
Surkova A.S., Budenkov S.S. (2012). Postroenie modeli i algoritma klasterizatsii v intellektualnom analize dannyh [Building a model and a clustering algorithm in data mining]. Vestnik of Lobachevsky University of Nizhni Novgorod. (2(1)). 198-202. (in Russian).
Tolk. A (2015). The next generation of modeling & simulation: integrating big data and deep learning Summer Simulation Multiconference.
Trusov A.N., Ivanchenko P.Yu., Katsuro D.A. (2014). Razrabotka avtomatizirovannoy informatsionnoy sistemy dlya optimizatsionnogo analiza ekonomicheskikh protsessov [Development of automated information system for optimization analysis of economic processes]. Modern high technologies. (11). 38-40. (in Russian).
Trusov A.N., Katsuro D.A., Ivanchenko P.Yu. (2013). Izvlechenie i obrabotka informatsii s saytov ekonomicheskoy statistiki [Extraction and processing of information from the sites of economic statistics]. International Journal of Applied and Fundamental Research. (12). 120-122. (in Russian).
Xie K., et al. (2016). Value co-creation between firms and customers: The role of big data-based cooperative assets Information & Management. 53 (8). 1034-1048. doi: 10.1016/j.im.2016.06.003.
Yusupova N.I., Bogdanova D.R., Boyko M.V. (2014). Matematicheskoe obespechenie dlya podderzhki prinyatiya resheniy pri upravlenii kachestvom produktsii na osnove analiza tekstovoy informatsii [Decision support for quality management based on artificial intelligence applications for unstructed data analysis]. Modern problems of science and education. (3). 18. (in Russian).
Страница обновлена: 28.04.2025 в 12:27:37